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ABSTRACT: Avalanche researchers have long recognized that stability information from 
specific snow pits may or may not represent the stability conditions on the entire slope. 
Although considerable theory exists for the probabilistic treatment of geo-technical materials, 
there has been little effort into identifying the nature of spatial stochastic variation in snow 
properties. A few years ago the mean and variance was sufficient but snow researchers are now 
becoming interested in rational snow correlation structures. This paper compares the spatial 
correlation structure of penetration resistance of two different snow layers, in layer 
perpendicular direction, using random field theory. Our data come from SnowMicroPen (SMP) 
measurements at Patsio in Greater Himalayas, India. Knowing that snow properties are 
spatially correlated, what is a reasonable correlation model? Are snow best represented using 
fractal models or finite scale models? These are questions that this paper addresses by 
examining a large number of Equi-Temperature (ET) fine grain and depth hoar snow signatures 
from SMP soundings.  
 
Analysis shows that one dimensional vertical penetration resistance may exhibit different spatial 
variability characteristics depending on the length of sampling window. The spectral density 
analyses of SMP data demonstrate that fractal behavior is present for ET fine grain snow, but is 
unlikely to be a typical feature of temperature gradient metamorphosed snow. Further we 
assumed that shear strength of a snow layer would have similar spatial structure in horizontal and 
vertical direction as that of penetration resistance. The spatially varying shear strength field of the 
weak layer with desired correlation structure is then generated and a two-dimensional cellular 
automata model is used to evaluate the extent to which the spatial correlation length in shear 
strength affects the snow stability. Our simulation results are consistent with recent work relating 
spatial variability to snow stability, where spatial structure has been quantified using geo-
statistical techniques. 
 
 Keywords: Spatial correlation structure, SnowMicroPen, Cellular automata.  
 

1. Introduction 
 
Almost all natural snow covers are highly 
variable in their properties and rarely 
homogeneous. Snow heterogeneity can be 
classified into two main categories. The first is 
the litho-logical heterogeneity in slope 
perpendicular direction, which can be 
manifested in the form of different layering within 
the snow pack. The second source of 
heterogeneity can be attributed to inherent 
spatial snow variability within a layer, i.e. 
variation of snow properties from one point to 
another in space (both in slope perpendicular as 
well as in slope parallel direction) due to different 
deposition conditions and different loading 
histories. Since snow avalanches release from 
zones of localized weakness, understanding the 

spatial variations of snow properties at the slope 
scale is important for determining slope stability. 
 
Most of the previous studies on snow cover 
spatial variability have described the 
heterogeneity of snow properties in slope 
parallel direction within a specific snow layer. 
Conway and Abrahamson (1984; 1988) 
quantified stability variations by making 
measurements using modified shear frame tests 
adjacent to recently avalanched slopes. Föhn 
(1988) conducted similar work using a different 
shear frame test and found somewhat less 
variability.  Subsequent studies have employed 
rutschblock tests (Jamieson, 1995), drop 
hammer, stuffblock, quantified loaded column 
tests and various penetrometers (Stewart, 2002; 
Kronholm and others, 2001; Campbell and 
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Jamieson, 2003; Kronholm and Schweizer, 2003; 
Birkeland and others, 1995; Kronholm and 
others, 2004) to assess variations in stability, 
penetration resistance, and structure of 
individual layers.  
 
Recently numerical experiments such as cellular 
automaton (CA) models have been used to 
investigate the effect of spatial variability on 
snowpack stability (Fyffe and Zaiser, 2004; 
Kronholm and Birkeland, 2005). Spatial structure 
was quantified using nugget to sill ratio of the 
semivariogram (Kronholm and Birkeland, 2005). 
These studies demonstrated that shear strength 
variations both in terms of standard deviation 
and spatial structure might be critically important 
for avalanche fracture propagation.  
 
To investigate the vertical spatial variability of 
penetration resistance in snow layers, we took 
measurements with SMP and identified 
individual layers (Equi-temperature fine grain 
and depth hoar layer) in the snow cover. The 
vertical spatial structure of each layer was 
described using classical statistics and scale of 
fluctuation, δv (Vanmarcke, 1983). The 
penetration resistance data exhibits different 
spatial variability characteristics depending on 
the size of the sampling window. We expect that 
this behavior is due to snow having a fractal 
nature at many scales. The spectral density 
analyses demonstrate that fractal behavior is 
present for Equi-temperature (ET) fine grain 
snow, but is unlikely to be a typical feature of 
temperature gradient metamorphosed snow. The 
spatial structure of depth hoar layer can therefore 
be well modeled using a finite correlation function 
such as the Markov correlation function. Further 
we assumed that shear strength of a weak layer 
would have similar spatial varying structure in 
horizontal and vertical direction as that of 
penetration resistance. The spatially varying 
shear strength field of the weak layer with desired 
correlation structure is then generated and a two-
dimensional CA model is used to evaluate the 
extent to which the spatial correlation length in 
shear strength affects the snow stability.  
 
2. Methods 
2.1 Field Measurements 
 
Satyawali and others (2004) used the SMP 
measurements in estimating snow layers in 
Himalayan snow packs. The SMP (Johnson and 

Schneebeli, 1999) is a motor-driven, constant 
speed micropenetrometer, which generates 
high-resolution data, sampling approximately 
250 measurements of hardness (penetration 
resistance) per mm.  Measurements were taken 
in the field at Patsio (3800 m) research station 
on level ground as well as on several small 
slopes. Snow pit data was also taken along with 
the SMP profile, which helped in finding the layer 
interface and the layer type. 
 
2.2 Delineation of snow layers  
 
We first generated sets of SMP signatures 
corresponding to ET fine grain and depth hoar 
snow layers to find out the spatial structure of 
penetration resistance in vertical direction.  The 
desired snow layers were delineated utilizing the 
SMP data, supplemented with manual snow pit 
profiles. Apart from the general trend of strength 
for each layer, sub layers were also noticed 
frequently within the ET fine grain layers. Most of 
the ET fine grain layers were actually part of 
wind slab layers found in majority of SMP 
profiles. Altogether 100 signatures of ET fine 
grain snow and 80 signatures of depth hoar 
snow of varying lengths were extracted from 
different SMP profiles.  
 
2.3 Vertical spatial variability analysis – 
Random Field Modeling  
 
In this work we have used random field theory, to 
find out the statistics relating to the spatial 
correlation structure of penetration resistance of 
a layer in vertical direction. Here interest was 
specifically focus on whether the snow is best 
modeled by a finite scale stochastic model 
having limited spatial correlation, or by a fractal 
model having significant lingering correlation over 
very large distances. It is assumed that a specific 
snow layer is spatially statistically homogeneous 
with respect to penetration process and that the 
SMP signatures represent an ensemble of 
largely independent realizations of the same 1-D 
random process.  
 
Vanmarcke (1983), who pioneered random field 
theory stated that, in order to describe a 
property, ν, stochastically, three parameters are 
needed: (i) the mean, µ; (ii) the standard 
deviation, σ (or the variance, σ2, or the 
coefficient of variation, CV); and (iii) the scale of 
fluctuation, δν. Central to estimation of scale of 
fluctuation is the autocovariance function, ck, or 
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the autocorrelation, ρk, at lag k, which are 
defined, respectively, as: 
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Where Xi = value of property X at location i; µ = 
mean of the property X; E[…] = expected value; 
co = autocovariance at lag 0; ck = c-k and ρk = ρ-k.  
 
The sample autocorrelation function (ACF) is the 
graph of rk for lags k = 0, 1, 2 … K, where K is 
the maximum number of lags allowable – 
generally, K = N/4 (Box and Jenkins, 1970), 
where N is the total number of data points. The 
sample ACF at lag k, rk, is evaluated using: 
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In the field of time series analysis, the correlation 
distance determined from sample ACF is known 
as Bartlett’s approximation and corresponds to 
two standard errors of the estimates i.e. rk = 
±1.96 /√N.  
 
Vanmarcke (1983) suggested that δv can be 
determined by fitting one of the models to the 
sample ACF, as given in table 1, where ∆z is the 
depth interval. The scale of fluctuation, δv, is 
defined such that it is equal to the area under 
the correlation function and represents a 
distance over which the parameter exhibits 
autocorrelation. These models are considered to 
be finite scale models because the correlation 
dies out very rapidly for separation distances ∆z 
greater than δv - in particular, the area under 
ACF function is finite. Such models are also 
called short-memory.  
 
An alternative model, which is rapidly gaining 
acceptance in a wide variety of geotechnical 
applications (Fenton, 1999), is the fractal model, 
also known as statistically self-similar, long-
memory and 1/f noise. It is yet to be seen if this 
idea of long memory behaviour in snow properties 
holds for natural snow covers both in the 
horizontal and vertical direction, there perhaps 
less reason to believe so in vertical direction. 
Nevertheless, it is worth investigating if statistical 
evidence supports a fractal model in the vertical 

direction since this possibility cannot be ruled out. 
Fractal processes have an infinite scale of 
fluctuation and correlations remain significant 
over very large distances. Fenton (1999) 
suggested that probably the simplest way to 
determine whether the SMP data are fractal in 
nature or not, is to examine the sample spectral 
density function (SDF). Fractal processes have 
SDFs of the form G (ω) ∝ ω-γ for γ > 0. Thus, 
loge{G(ω)} = c - γ loge ω, for some constant c, so 
that a log-log plot of the sample spectral density 
function of a fractal process will be a straight line 
with slope -γ. 
 
Table 1. Theoretical autocorrelation functions 
used to determine the scale of fluctuation δv 
(Vanmarcke, 1983; Li and White, 1987) 
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2.4 Cellular Automaton Simulation Technique 
 
The physically based cellular automaton model 
used in this work is similar to models described 
by Fyffe and Zaiser (2004) and Kronholm and 
Birkland (2005). The CA model consists of a 
two-dimensional grid of 100 x 100 cells, which 
represents the weak layer interface loaded in 
shear by the slab weight. Each cell is assigned 
an initial shear stress valueτ int

, yx
, and a shear 

strength value Σx,y so that its static stability is 
calculated as Sx,y = Σx,y / τx,y

int.  A modified 
version of sequential indicator simulator method 
(Bellin and Rubin, 1996) is used to generate 
grids of initial shear strength values with known 
statistical properties and spatial structures. The 
initial stress field is globally constant, such that 
τ int

, yx
 is constant over the grid and τ int

, yx
 = min 

(Σx,y). After fracture of a cell the stress on that 
cell is transferred to any non-fractured 
neighbouring cells within a certain distance. This 
stress redistribution may cause some of the 
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neighbour cells to fracture, resulting in fracture 
propagation through the model domain, but 
alternatively only one cell may fracture. A 
detailed discussion on CA model and the local 
stress transfer scheme can be found in 
Kronholm and Birkland (2005).  
 
Following Kronholm and Birkeland (2005), we 
examined the size of the fracture (i.e. number of 
fractured cells) caused by the initial cell fracture 
and refer to as ‘model avalanche size’. All model 
avalanches that covered > 9000 cells (90%) in 
the model were considered ‘large’. We 
investigate the effect of standard deviation and 
spatial structure on model avalanche size by 
running the model 1000 times for each defined 
shear strength field, every time with a different 
realization having the same statistical 
distribution and correlation structure. A computer 
program in C-language is written to implement 
the simulation process.    
 
3.0 Results and Discussions 
 
3.1 Vertical spatial variability 
 
The extracted force-depth signatures of ET fine 
grain snow and depth hoar were of varying 
sample lengths. A truncation length of 200 mm 
(~50000 data points) for ET fine grain data sets 
and that of 150 mm (~37500 data points) for 
depth hoar was selected. The length selected is 
a tradeoff between the desire to obtain as many 
contributing records (encouraging a short 
truncation length) and the need to investigate 
larger lags to ascertain fractal behaviour 
(encouraging longer truncation lengths). Apart 
from these data sets smaller subsets of length 
10 mm, 20 mm, 50 mm and 100 mm were also 
created to find out the effect of varying sampling 
window. Typical force-depth signatures 
representing the variations in penetration force 
values corresponding to ET fine grain and depth 
hoar data sets are shown in figure 1 a and 1b. 
For each data set the following steps were 
carried out: 
 

a. Linear or quadratic trends were 
evaluated using the method of ordinary 
least squares (OLS) and removed from 
the SMP data.  

b. The residuals were then converted into a 
normal distribution using normal score 
transformation. 

c. The sample autocorrelation function 
(ACF) was evaluated. 

d. Vannarckes’s simple exponential and 
squared exponential models (Models 2 
and 3 respectively in Table 1) were fitted 
to the ACF using the method of OLS. 

e. Bartlett’s limits were calculated using : 

n
r

n
r

lk

i
ik

96.1212 2
1

1

2 ≈







+= ∑

−

=

 

f. The scale of fluctuation, δν, was 
evaluated using the relationships given 
in Table 1. 

 

 
(a) 

 

(b) 
 

Figure 1: Typical force-depth signatures 
representing the variations in penetration force 
values corresponding to (a) Depth hoar and (b) 
ET fine grain and data sets. 
 
 
In order to illustrate the evaluation process, a 
typical ET fine grain record TILA001-EN-
720:920mm is used. The sample ACF is shown 
in Figure 2. Superimposed on the sample ACF 
are the Markov and squared exponential models 

352



as given in Table 1.  The scale of fluctuation,δν, 
corresponding to Markov model is 10.78 mm 
and for squared exponential model is 12.59 mm. 
By superimposing Bartlett’s limits (rB = ± 0.00874) 
on the sample ACF, Bartlett’s distance (rB) is 
determined. It is evident from Figure 2 that the 
sample ACF intersects Bartlett’s limits at a 
distance of approximately 11.81 mm, hence rB = 
11.81 mm. 
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Figure 2: Sample ACF, Bartlett’s limit and model 
ACFs obtained from the normal score 
transformed residuals of penetration resistance. 
 
 
The methodology described above was used for 
each of the analysis performed on SMP 
signatures corresponding to ET fine grain and 
depth hoar snow layers. Tables 2 shows the 
classical statistics and Table 3 the results of 
ACF analysis for each layer. The mean 
penetration force for ET fine grain snow vary 
from 0.76 N to 7.62 N and the CV ranges from 
7.8 % to 69.8 %. The vertical scale of fluctuation, 
δν, for ET fine grain varies between 7.9 mm to 
25.8 mm, with a mean of 14.7 mm and CV of 
26.0 %. Bartlett’s distance, on the other hand, 
varies between 8.9 mm to 24.9 mm, with a mean 
of 16.1 mm and a CV of 25.7 %. The SMP 
signatures corresponding to depth hoar layer 
reveals that mean penetration force vary from 
0.12 N to 1.10 N and the CV ranges from 7 % to 
67 %. In this case, δν is found to vary between 
0.34 mm to 4.21 mm, with a mean of 1.54 mm 
and CV of about 54.9 %, while rB varies between 
0.40 mm to 4.51 mm, with a mean of 1.86 mm 
and CV of 52.4 %.  
 
One would have confidence in the estimates of 
δν and rB, as they are based on populations with 
a large number of data points. Figure 3 shows a 

plot of δν  (δν2 & δν3) against rB for the ET fine 
grain datasets examined in detail and shows a 
strong correlation between these two 
parameters. In fact, the OLS line of best fit has 
properties of r2 = 0.89 for model 2 and r2 = 0.83 
for model 3 and for all practical purposes, one 
can assume that rB expresses the same quantity 
as that given by the scale of fluctuation.  
 
Table 2: Summary of statistics for penetration 
resistance of ET fine grain and depth hoar layers  
 

Classical Statistics Min Max 
Mean Penetration 
Force (N) 

0.76 7.62 ET Fine 
Grain 
Data Set CV (%)  7.8 69.8 

Mean Penetration 
Force (N) 

0.12 1.10 Depth 
Hoar   
Data Set CV (%) 7.0 67 

   
 
Table 3: Results of random field theory analysis 
for penetration resistance of ET fine grain and 
depth hoar layers  
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Figure 3: Relationship between scale of 
fluctuation, δν, and Bartlett’s distance rB. 

ACF (mm) Min Max Mean CV 
(%) 

δV2 7.9 22.3 13.7 25.9 

δV3 9.1 25.8 15.7 26.0 

ET Fine 
Grain Data 
Set 
Sample 
size – 200 
mm 

rB 8.9 24.9 16.1 25.7 

δV2 0.34 3.66 1.43 51.6 

δV3 0.41 4.21 1.66 58.3 
Depth Hoar   
Data Set 
Sample 
size – 150 
mm 

rB 0.40 4.51 1.86 52.4 
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The results on δν discussed above were for the 
sample lengths of 200 mm for ET fine grain layer 
and 150 mm for depth hoar layer. Attention is 
now focused towards finding out the effect of 
varying sample length on the estimates of 
correlation length. Figure 4a and 4b shows the 
variation of δν with different sampling windows 
for one of the ET fine grain and depth hoar data 
set respectively. Figures clearly demonstrate 
that estimate of the scale of fluctuation increases 
with the size of the sampling domain for both ET 
fine grains as well as depth hoar layers; however 
for the depth hoar, δν more or less remains 
unchanged for sampling windows greater than 
50 mm.  
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(b) 

Figure 4: Variation of scale of fluctuation, δν, with 
different sampling windows for (a) ET fine grain 
and (b) Depth hoar snow. 
 
 
Birkeland et al 2004 found each snow layer 
irrespective of the layer type had unique spatial 
variability characteristics (both in terms of the 
linear trends and the semivariogram estimators) 
and spatial structure of the penetration 

resistance is strongly influenced by the 
measurement layout and sampling resolution.  
 
Snow properties exhibit both discreet and 
continuous spatial variations on a multiplicity of 
scales (varying from grain scale to slope scale) 
depending upon interaction among the various 
external and internal physical processes 
occurring simultaneously at different length 
scales. Scale issues related with sampling and 
measurements also influence the spatial 
structure. We anticipate that the spatial 
correlation structure of penetration resistance of 
a snow layer may include one or a combination 
of the following dimensions: 
 

(a) Size of the micro-structural element or 
the cluster of elements which gives 
snow its strength during the penetration 
process 

(b) Correlation structure of microclimate 
(especially horizontal and vertical 
components of wind) during the 
formation of a layer and that of internal 
metamorphic processes when the layer 
is buried 

(c) Horizontal and vertical sampling 
distances or sampling resolution 

(d) Extent of the measurement (sampling 
domain) 

(e) Support volume of the measurement i.e. 
representative element volume (REV) 

 
We believe that the sampling domain 
dependence of δν as found in present work as 
well as the sampling resolution dependence of 
semivariogram estimators as reported previously 
(Birkland et al 2004) is a manifestation of this 
multifaceted nature of spatial variability. Though 
we do not have any conclusive proof, but we 
expect the estimates of δν  for 10 mm sampling 
window size to be related with the dimensions of 
mechanically significant micro-structural 
elements, which provide snow its strength. 
However, as the sampling domain is increased, 
more than one “nested spatial structures” comes 
into play which is reflected in variation of δν with 
domain size. Nested structures or sub-layering, 
which are created by external (e.g dynamic 
conditions of snow fall and wind) and internal 
(e.g. temperature gradient driven metamorphism) 
processes, are sources of variability which come 
into play simultaneously for all length scales and 
which are also influenced by the scale of 
observation. 
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Attention is now turned towards an alternative 
framework of fractal theory. Fenton (1999) 
proposed that the variation of spatial variability 
characteristics with size of the sampling domain 
is due to material having a self-similar nature at 
many scales. He showed that this sampling 
domain dependence is a typical feature of long-
memory or fractal processes when characterized 
by short-memory estimators. Thus, one 
motivation for the use of the fractal model, if 
found to be appropriate, instead of an 
‘equivalent’ finite scale model where the scale is 
adjusted to reflect the domain size, is that the 
main parameter of the fractal model becomes 
independent of the domain size. 
 
Figure 5a shows the minimum, maximum and 
average sample spectral density functions from 
the ensemble of data sets corresponding to ET 
fine grain layer. The SDFs in figure 5a appears 
to demonstrate fractal behaviour due to its near 
linear nature and constant negative slope. As 
the curves shown in figures 5a retain a distinct 
negative slope near the origin, rather than 
flattening out, the long scale (small frequency) 
nature of ET fine grain snow clearly shows 
fractal behaviour. On the basis of these plots, it 
appears that SMP force data of ET fine grain 
snow can be modeled by a fractal process with 
spectral density of the form, G(ω) = G0ω

-γ , where 
G0 is the spectral density and γ is the spectral 
exponent controlling distribution of power from 
high to low frequencies. The average estimated 
γ value was 0.9963 ± 0.1559. Over all ET fine 
grain soundings, the γ estimates ranged from 
0.6834 to 1.3640.  
 
Figure 5b shows the, maximum and average 
sample spectral density functions from the 
ensemble of data sets corresponding to depth 
hoar layer. The flattening-out of all the curves at 
lower frequencies (corresponding to longer scale) 
clearly indicates absence of long-range 
correlation and suggests that the fractal 
behaviour may not be present at large distances. 
Thus the penetration resistance data of depth 
hoar layer, where the fractal behaviour is not 
evident, can be well modeled using a finite scale 
correlation function, such as the Markov 
correlation function, which is exponentially 
decaying with separation distance.   
 

 
(a) 

 

 
(b) 

 
Figure 5: Sample Spectral Density Functions 
averaged over all (a) ET fine grain layer data set 
(b) Depth hoar layer dataset, with associated 
minimum and maximum at each frequency. 
 
3.2 Effect of spatial correlation structure on 
snow stability 
 
Based on previous findings (Jamieson and 
Johnston, 2001 and Kronholm and Birkeland, 
2005), CA model simulations were made with a 
normally distributed initial shear strength field 
with a specified mean Σ  = 1500 Pa and 
standard deviationσ Σ

. Since the shear strength 
values used in the model represents 
measurement made with a 250 cm2 shear frame, 
each cell of 100 x 100 grid is scaled at roughly 
0.15 m x 0.15m, thereby making total size of the 
model as 15 m x 15 m. 
 
The model avalanche sizes for all model runs 
showed a tendency to either produce a small 
fracture (only a few cells) or else nearly the 
whole grid catastrophically fails. In the first 
series of model simulations, we did not introduce 
the spatial autocorrelation in the initial shear 
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strength field and investigated the effect on the 
proportion of ‘large’ avalanches that the model 
run produced at different standard deviations. 
The proportion of large avalanches appeared 
very sensitive to the standard deviation of the 
shear strength distribution (figure 6).  
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Figure 6: Variation in proportion of large model 
avalanches (> 90% of the model cells) with 
standard deviation of shear strength distribution. 
 
In the second series of model simulations, we 
assumed that the spatial structure in weak layer 
shear strength field is in the form of a finite scale 
isotropic Markov correlation function; similar to 
that of penetration resistance of depth hoar 
layers. Figure 7 shows an example of weak layer 
shear strength field with specified mean and 
standard deviation, but having different 
correlation structure (δν). The spatial structure is 
quantified with associated ACFs and scale of 
fluctuations. Figure 8 shows the effect of varying 
the spatial correlation length on proportion of 
large avalanches at two different CV’s of 10 % 
and 20 %. The correlation lengths (δν) depicted 
in Figure 8 are scaled to the dimension of a 
single cell. Given identical mean and standard 
deviation of shear strength values, initial shear 
strength field with strong spatial correlation 
structure (such as Figure 7d) are much more 
prone to propagating the large fractures than 
field with weaker spatial correlation structure 
(such as Figure 7a). Our results are consistent 
with recent work relating spatial variability to snow 
stability, where the spatial structure has been 
quantified using geo-statistical techniques 
(Kronholm and Birkland 2005). 

 
 
Figure 7: Spatially varying weak layer shear 
strength fields with mean of 1500 Pa and 
standard deviation of 300 Pa, having different 
spatial structure. The spatial structure generated 
is in the form of Markov correlation function with 
different correlation lengths of (a) δν = 0, (b) δν = 
10, (c) δν = 20 and (d) δν = 40  
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Figure 8: Effect of varying the spatial correlation 
length on proportion of large avalanches at two 
different CV’s of 10 % and 20 %. 

4.0 Conclusion 

In this paper, we investigated the vertical spatial 
correlation structure of penetration resistance in 
ET fine grain and depth hoar snow layers using 
random field modeling techniques. The small 
scale vertical correlation distance (δν) of the 
penetration resistance of ET fine grain (sample 
size-200 mm) and depth hoar (sample size-150 
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mm) snow varies between 7.9 mm to 25.8 mm 
and 0.34 mm to 4.21 mm respectively. Our 
analysis shows that the vertical spatial variability 
characteristic, in terms of δν, is strongly 
influenced by the domain of investigation or the 
sampling window. Estimates of δν increases with 
the size of the sampling domain for both ET fine 
grains as well as depth hoar layers; however for 
the depth hoar, δν more or less remains 
unchanged for sampling windows greater than 
50 mm. We contend that this sampling domain 
dependence of δν may be due to snow having a 
fractal or self-similar nature at many scales. The 
spectral density analysis suggests that fractal 
behavior is apparent in vertical penetration 
resistance of ET fine grain layers. The lack of 
fractal behavior in penetration resistance of depth 
hoar layers implies that this can be well modeled 
by finite-scale correlation functions such as 
Markov correlation function, which are typically 
easier to use than are fractal models. It should 
be pointed out, however, that a statistical 
analysis which does not display fractal behavior 
does not necessarily imply that the 
corresponding snow type is non-fractal, just that 
the particular sample considered lacks the full 
range of scales of variability, which is particularly 
true for depth hoar layers in vertical direction. A 
truly fractal snow layer would exhibit variability at 
all scales.  
 
Further, a 2-D CA model has been used to 
investigate the effect of spatial variability on the 
fracture propagation potential of weak layers. Our 
analysis shows that the probability of large 
fractures is strongly dependent on both the 
spread (standard deviation) and the spatial 
continuity (correlation length) of the weak layer 
shear strength field. Fractures through weak 
snow layers with large correlation length are 
much more likely to spread over entire model 
domain than fractures through weak layers with 
smaller correlation lengths.  
The present work is a first step towards analyzing 
the small-scale vertical spatial variability of snow 
layers in Himalayan snow cover. Our results are 
restricted to ET fine grain and depth hoar layers 
and to reach more general conclusions, additional 
rigorous laboratory and field studies of 
penetration resistance of different snow layers are 
needed. In terms of laboratory investigations, we 
need to establish the relationship between the 
correlation length of penetration resistance and 
dimensions of micro-structural elements (i.e. 

correlation length obtained from micro-structural 
analysis) from control snow samples. In addition, 
analysis of horizontal SMP profiles through a 
layer will be helpful in comparing the horizontal 
spatial structure of penetration resistance with the 
vertical spatial structure.        
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