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ABSTRACT: This paper evaluates a new decision aid for traveling in avalanche terrain. 

The aid is intended primarily for winter recreationists in Canada and provides guidance in trip 
selection, route finding and slope evaluation. In contrast to other avalanche decision aids, this 
tool does not attempt to calculate risk or the probability of triggering an avalanche. Instead, it 
frames alternatives in terms of prevention value, or the portion of historical accidents that 
would have been prevented had the victims used the thresholds of the aid as decision crite-
ria. 

This paper examines the two components that comprise the decision aid. The first com-
ponent, the Avaluator Trip Planner, is quantitatively evaluated using 21 years of Canadian 
avalanche accident data. The second component, the Obvious Clues Method, is quantita-
tively evaluated for application in Canada by building on a previous analysis of its effective-
ness in the United States. Combined, the two components offer a prevention value of over 
90% of historical Canadian avalanche accidents. Type I errors by the decision aid (false 
negative results) are most likely to occur under moderate danger rating and involve small iso-
lated slabs or deep instabilities. The paper concludes by considering the possible impact of 
the decision aid on future accident trends, and shows that it may be possible to detect a re-
duction in Canadian avalanche accidents in as little as three to four seasons after recreation-
ists adopt the decision aid. 

 
KEYWORDS:  Education, decision-making, risk management, safety 
 

1. INTRODUCTION 
Apparently, it was philosopher and poet 

George Santayana who first said: “Those who 
do not learn from history are doomed to repeat 
it.”  Somewhere along the way, somebody 
added the corollary “And those who learn from 
history are doomed to know that they are re-
peating it.” 

Most people smile when they hear the 
corollary quote, perhaps because it reminds 
us that sometimes, even when we know about 
the past, we don’t always do the right thing. 

This phenomenon is vividly clear in ava-
lanche accidents, which are characterized by 
three recurring themes. First, avalanche vic-
tims trigger more than 90% of the avalanches 
that bury them or their partners. Second, these 
avalanches are typically triggered under condi-
tions where the hazard would have been obvi-
ous even to an avalanche novice (Atkins, 
2000; McCammon, 2000, 2002). And third, 

many avalanche victims (in the U.S., almost 
half) have formal avalanche training. These 
recurring themes raise distressing questions 
about how effectively avalanche education 
prepares students to manage the conditions 
that have taken lives in the past. 

Traditionally, there have been two ap-
proaches to teaching recreationists about 
avalanches. The first utilizes a knowledge-
based strategy aimed at explaining avalanche 
phenomena and the conditions that give rise 
to avalanche hazard. Students are taught to 
apply this knowledge analytically when they 
assess risk in avalanche terrain. 

A second approach utilizes a rule-based 
strategy that teaches simple algorithms for 
assessing avalanche hazard. Students learn 
to recognize specific situational cues, and to 
use a checklist, arithmetic procedure, or graph 
to make travel choices. 

Research in other fields has consistently 
shown that knowledge-based methods gener-
ally work well for experienced decision mak-
ers, whereas rule-based methods often work 
best for novices (see, for example, Metzger 
and Parasuraman, 2005; Gonzalez, 2004; Hirt 
and others, 2003; Maltz and Shinar, 2003; 
Wiggins and O’Hare, 2003; Kleinmuntz, 1985). 
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Interest in rule-based avalanche education 
has, in recent years, led to the development of 
a number of quantitative decision aids for 
travel in avalanche terrain. Among them are 
the Reduction Method (Munter, 1997), the 
Stop-or-Go Method (Larcher, 1999), the 
SnowCard (Engler and Mersch, 2000), the 
NivoTest (Bolognesi, 2000), and the Obvious 
Clues Method (McCammon, 2000). 

A quantitative evaluation of these methods 
against 33 years of accident data in the United 
States by McCammon and Haegeli (2006) 
found that these methods, had they been used 
by historical accident victims, would have pre-
vented between 60% and 92% of all accidents 
in U.S. Other metrics of these methods, such 
as how well they predict avalanching or acci-
dents, have not yet been evaluated. 

In this paper, we evaluate a new decision 
aid, the Avaluator Trip Planner (ATP). We 
examine the prevention value of the ATP 
alone and in combination with the Obvious 
Clues Method (OCM) when used by Canadian 
winter recreationists. 

2. DESCRIPTION 
The Avaluator Trip Planner (Figure 1) is a 

graphical tool that assists winter recreationists 
in choosing a travel route based on current 
avalanche conditions. The ATP was derived 
from expert opinion regarding travel in ava-
lanche terrain. 

To use the ATP, users match the current 
avalanche danger rating (vertical axis) against 
the terrain rating of possible trips (horizontal 
axis). Trips are rated on the Avalanche Terrain 
Exposure Scale developed by Parks Canada 
(Statham et al., 2006). Ratings for specific 
trips are available from Parks Canada and will 
appear in future guidebooks. Users choose a 
trip based on color: green (normal caution), 
yellow (extra caution) and red (not recom-

mended). Details of the ATP can be found in 
Haegeli et al. (this volume). 

The Obvious Clues Method is a checklist 
for evaluating avalanche hazard while travel-
ing through avalanche terrain or when evaluat-
ing avalanche slopes. Originally developed as 
a quantitative scale to assess decision making 
in recreational accidents (McCammon, 2000; 
2002), the Obvious Clues Method works by 
adding up the number of avalanche-related 
clues that are present (Table 1). Situations 
with one to two clues suggest normal caution, 
three to four clues suggests extra caution, and 
five or more clues are not recommended for 
travel. 

In contrast to other avalanche decision 
aids, the ATP and OCM do not estimate risk, 
or the likelihood of an avalanche occurring. 
Instead, they identify the frequency with which 
the conditions were typical of past accidents. 

3. METHODS 
One of the obstacles to designing a deci-

sion aid for avalanche terrain is the expecta-
tion by users that such a device will predict 
when a slope will avalanche. Avalanche pre-
diction by a simple algorithm is theoretically 
possible, but its design requires two types of 
data. The first type comes from accidents 
where the avalanche was triggered by its vic-
tims. Such data is readily available in accident 
records. 

The second type of design data is far 
more problematic, since it relates to incidents 
where an avalanche was not triggered. Not 
only is such data generally unavailable, but 
the inherent uncertainty in slopes that were 
traversed once or twice and not triggered 
compromises the quality of any conclusions 
drawn from a dichotomous comparison. The 

 
Figure 1. Grayscale rendering of the Avaluator 
Trip Planner. Region (a) is green, region (b) is 
yellow, and region (c) is red. 

Clue Description 

Avalanches In the area in the last 48 hrs. 
Loading By snow, wind or rain in the last 48 hrs. 
Path Identifiable by a novice. 

Terrain trap Gullies, trees, cliffs or other features 
that increase severity of being caught.  

Rating Considerable or higher hazard on the 
current avalanche bulletin. 

Unstable 
snow 

Collapsing, cracking, hollow snow or 
other clear evidence of instability. 

Thaw 
instability 

Recent warming of the snow surface 
due to sun, rain, or warm air. 

 TOTAL 

Table 1. The Obvious Clues Method for making 
decisions in avalanche terrain. 
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result is that without robust nonevent data, we 
cannot directly assess the predictive value of 
avalanche decision aids. 

In this study, we used prevention value 
rather than predictive value to assess the ef-
fectiveness of decision aids. Our performance 
metric was the proportion of historical acci-
dents that each method would have pre-
vented, had the avalanche victims used the 
method as it was intended. 

3.1 Evaluating the Avaluator Trip Planner 
In determining the prevention value of the 

ATP, we used Canadian accident data exclu-
sively. Prevention values for the ATP were 
calculated using two methods. 

The first method considered danger rat-
ings and ATES ratings as discrete variables, 
an interpretation that might be typical of a 
novice user who does not perceive subtle 
differences within each rating category. 
Under this method, we classified accidents by 
danger rating and ATES trip rating. Plotting 
accident frequencies in the ATES-danger rat-
ing plane of Figure 1, we simply calculated the 
proportion of accidents that lay below the two 
color boundaries. Confidence limits for this 
proportion were computed using a relationship 
between the F distribution and the binomial 
distribution (Zar, 1999, pp. 527–530), cor-
rected for symmetry around the proportion. 

The second method considered ATES rat-
ings and danger ratings as continuous vari-
ables, an interpretation that might be typical of 
advanced users who perceive subtle differ-
ences within each rating category. We began 
by assessing the discrete accident frequencies 
for bivariate normality. Bivariate normality 
requires, among other things, that both vari-
ables are normally distributed (Stevens, 1996: 
243). In other words, not only must both vari-
ables follow a normal distribution in their en-
tirety, but for each ATES rating (x) there must 
be a normal distribution of danger ratings (y) 
and for each y-value there must be a normal 
distribution of x-values. To test for normality 
across the variables, we used the D’Agostino-
Pearson K2 test, which is preferable to other 
methods when large amounts of tied data are 
present. 

As discussed in Section 5, the hypothesis 
that the data came from a bivariate normal 
distribution was not rejected. Thus, all possible 
accident frequencies could be approximated 
using the bivariate normal probability density 
function (PDF): 
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Here, µi is the mean and σi  is the standard 
deviation of each sample distribution, and ρ is 
the correlation coefficient of the two samples. 

The maximum proportion (T) of accidents 
is the volume under the PDF surface bounded 
by the ATP graph: 
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where z1(0) and z2(0) correspond to the lower 
boudaries of x and y on the ATP graph and 
z1(1) and z2(1) are the upper boudaries. The 
prevention value (PV) of each color boundary j 
on the ATP is the proportion of the PDF vol-
ume which lies above the boundary, or 
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where z1(2)j and z2(2)j are the maximum values 
of x and y on boundary (j)  mapped into bivari-
ate normal space. Maximum values of x and y 
were determined by a polynomial regression 
of the color boundaries. 

Closed form solutions of Equations (4) and 
(5) do not exist, and so we employed the poly-
hedral approximations 

 
  

!T = F(z
1
,z

2
,")#z

1
#z

2
z

2(0)

z
2(1)

$
z

1(0)

z
1(1)

$  (6) 

and 

 
  

P !V
j
= 1"

1

!T
F(z

1
,z

2
,#)$z

1
$z

2
z

2(0)

z
2(2)

%
z

1(0)

z
1(2)

%  (7) 

for Equations (4) and (5), where Δz1 and Δz2 
are the polyhedral cross sectional areas. 

3.2 Evaluating the Obvious Clues Method 
Avalanche accident data for Canada 

lacked the information to calculate the preven-
tion value of the OCM directly. Fortunately, a 
previous investigation had established preven-
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tion values for the OCM in the United States 
(McCammon and Haegeli, 2006). Thus the 
first step in determining prevention values of 
the OCM in Canada was to assess the differ-
ences between the U.S. and Canadian acci-
dent datasets. 

The parameters used to compare the two 
accident data sets are shown in Table 2, along 
with the type of test used in the comparison. 
For each parameter, we conducted four com-
parisons: one within each dataset between 
fatal and non-fatal accidents and two across 
the datasets for fatal and non-fatal accidents. 
The comparison strategy is shown in Figure 2. 
The null hypothesis of no difference between 
datasets was rejected when two-sample test-
ing yielded probability P < 0.05. 

In the 2×2 arrangement shown in Figure 2, 
probabilities P1(US) and P2(CAN) indicated differ-
ences in how consistently these parameters 
were reported in fatal and non fatal accidents. 
Probabilities P3(nonfatal) and P4(fatal) indicated 
differences between parameters across 
datasets. Significant P values for P4(fatal) were 
of particular importance, since reporting is 
generally of higher quality in fatal accidents. 

Due to the evolution of snowmobile tech-
nology and subsequent changes in snowmo-
bile use patterns in the backcountry, the 
analysis of avalanche trigger type was re-
stricted to the period 1984–2004 which was 
common to both datasets. Also, the danger 
rating of considerable was not widely used in 
the U.S. and Canada prior to 1995, so only 
accidents after this date were used in compar-
ing the danger rating parameter between 
datasets. 

In comparing continuous variables, we 
used the parametric t-test since the number of 
samples was generally large enough (i.e. 

greater than 100) to justify parametric meth-
ods. We compared start zone aspects by 
computing the angular mean and confidence 
interval around each mean, following the 
methods described by Fisher (1999) for 
grouped circular data. 

Where we found significant differences be-
tween the U.S. and Canadian accident pa-
rameters, we calculated prevention values 
explicitly across categories within each pa-
rameter. Where applicable, we used preven-
tion values for the U.S. directly from a 
previous study (McCammon and Haegeli, 
2006).  Parameter prevention values were 
calculated for the Canadian dataset as 
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Parameter Categories or variables Test 
Avalanche type Slab, loose Yates’ corrected χ 2 

Trigger classification Natural, artificial Yates’ corrected χ 2 
Trigger type Non-motorized, motorized Yates’ corrected χ 2 

Avalanche climate Maritime, intermountain/transitional, conti-
nental 2×3 contingency table 

Danger rating Low, moderate, considerable, high, ex-
treme 2×5 contingency table 

Elevation band Below treeline, near treeline, above treeline 2×3 contingency table 
Number caught Integer t - test 
FL width Length in meters t - test 
Slab depth: non-
motorized Depth in meters t - test 

Slab depth: motor-
ized 

Depth in meters t - test 

SZ incline Degrees from horizontal t - test 
Aspect (circular) Ordinal compass direction Angular mean and CI 

Table 2. Parameters and tests used to compare U.S. and Canadian accident data. 
 
 

 
Figure 2. Comparison scheme for U.S. and   
Canadian accidents. Variables ni and mi repre-
sent the number of cases in each category. 
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where ni was the total number of incidents in 
the Canadian dataset for which that parameter 
was known, xj was the number of incidents 
prevented in each parameter category j , and 
PVi,j(US) was the prevention value in the U.S. 
dataset for category j within parameter i, and k 
was the number of categories within the pa-
rameter. 

The uncertainty in the prevention value for 
each parameter was calculated as a cumula-
tive error: 
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where Δε j was the error associated with the 
prevention value of the j th group within pa-
rameter i. Since the contribution of each term 
to the cumulative error is proportional to its 
probability of occurring, Eq. 9 can be written 
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where mi is the total number of cases in pa-
rameter i  and cj is the 95% binomial confi-
dence interval of the PV for that category. 

At each threshold value, the overall pre-
vention value was calculated as 
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where b was the number of parameters across 
which the prevention value was being evalu-
ated. Errors in the overall prevention value 
were calculated using Eq. 9. 

3.3 Evaluating the combined ATP and OCM 
The combined prevention proportion (PV′) 

for a combination of the ATP and OCM is 
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where PV1 is the prevention value of the first 
tool applied and PV2 is the prevention value of 
the second tool applied. 

If functional linkages exist between the 
two tools, so that certain accidents would be 
consistently prevented by either tool, we would 
expect the cumulative prevention values to be 
lower than those calculated by Eq. 12. Unfor-
tunately, identifying such linkages is not pos-
sible with the current data. 

Uncertainty in the combined prevention 
value is computed from the error formulation 
of Eq. 9: 
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3.4 Low-frequency accidents 
Accident frequencies do not drop to zero 

in the green region of the ATP, or when the 
OCM indicates two or fewer clues. Such acci-
dents, which by definition are rare, are of great 
interest since they reflect conditions where a 
user may not be fully attendant to the ava-
lanche hazard. Any common features of these 
low-frequency accidents should be part of the 
user training for both decision aids. 

We evaluated low frequency accidents for 
both the ATP and OCM using the parameters 
shown in Table 2. Due to the small number of 
accidents involved, we employed the non-
parametric Mann-Whitney test in place of the 
t-tests listed in Table 2. 

3.5 Measuring accident reduction trends 
If the ATP and OCM become widely 

adopted, how long will it take to detect an 
accident prevention trend? As we discussed in 
the beginning of this section, non-event back-
country use data is not generally available, 
and so it is not possible to directly monitor any 
decrease in avalanche accident rates.  

However, Fleiss, Tytun and Ury (1980) 
and Ury and Fleis (1980) described a method 
for estimating minimum sample size to detect 
proportion differences between unequal popu-
lations. We modified their method to estimate 
how many seasons would elapse before an 
accident prevention trend would become sta-
tistically significant. 

Viewed as two populations, past accidents 
and future accidents are characterized by 
some number of incidents (ni) where enough 
information is present to rate the incident ac-
cording to the ATP or OCM. There is also a 
proportion of incidents (pi) that represents 
accidents that occurred at scores above the 
prevention threshold. Assuming that the re-
porting rate of incidents (γ ) stays approxi-
mately the same over the period of analysis, 
we need only calculate the number of future 
reported incidents  (n1) to determine how 
many seasons (S = n1/γ ) will elapse before a 
set difference (δ = ⎢p1  - p2 ⎢) in the prevention 
values becomes significant. The percent drop 
in the proportion of accidents above the 
threshold value (H) is simply H =    1 – p1/p2). 
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The method described by Fleiss, Tytun 
and Ury (1980) and Ury and Fleiss (1980) 
estimates the smaller sample as 
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where r = n2/n1. The sample size parameter is 
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Here, tα(2),∞ is the value of the t distribution 
evaluated as a two-tailed probability (α ) of a 
Type I error for infinite degrees of freedom, 
and tβ(1),∞ is the value of the t distribution 
evaluated at the one-tailed probability (β ) of a 
Type II error. The variable p′ is the proportion 
average and q′ is the complement average 
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where qi = 1 – pi. Since the population of exist-
ing accidents (n2) is known, we solved Eq. 15 
numerically for r, from which n1 and subse-
quently S could be computed directly. 

4. DATA 
Our analysis of the ATP and OCM utilized 

avalanche accident data from two sources. 
Information on Canadian accidents came from 
records maintained by the Canadian Ava-
lanche Association. We considered only those 
accidents that involved skiing and snowboard-
ing (excluding lift-assisted and mechanized), 
snowshoeing, hiking, or climbing. We ex-
cluded commercial, custodial, highway and 
residential incidents from the analysis. The 
Canadian dataset included 697 avalanche 
incidents from 1984 – 2005, and reported 423 
people caught and 182 people killed. 

The accident dataset for the United States 
used in this study was derived from the na-
tional records of the Colorado Avalanche In-
formation Center. The data covers the period 
1972 – 2004, and includes a total of 751 inci-
dents, involving 1408 people caught and 518 
people killed. We considered only recreational 
accidents, and excluded incidents related to 
commercial guiding, custodial groups, highway 
and residential activities and ski patrol or ava-
lanche control operations. 

5. RESULTS 

5.1 Prevention values: Avaluator Trip Planner 
There were 203 Canadian cases where 

both the trip-level ATES rating and the danger 

rating were known. Figure 3 shows the fre-
quency of accidents, and the arrangement 
used to calculate the discrete prevention val-
ues. Curves A and B represent the color 
boundaries, and the dotted line indicates the 
boundaries of the Avaluator card. Prevention 
values for boundaries A and B, computed as 
discrete proportions (PV1), appear in Table 3. 

The first step in computing continuous 
prevention values for boundaries A and B was 
to test for bivariate normality using a piece-
wise D’Agostino-Pearson test. The distribution 
of both ATES ratings and avalanche danger 
ratings did not reject normality (P =  0.258 and 
0.474 respectively). P-values for distributions 
within each x and y value ranged from 0.258 
to 0.923, and likewise did not reject normality. 
The calculated bivariate normal distribution is 
shown in Figure 3. Parameters for the bivari-
ate distribution were µx= 2.3; σx= 0.573; µy= 
2.9; σy= 0.815; ρ = -0.02; P = 0.754). 

Polynomial regression yielded the follow-
ing relationships for curves A and B: 
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        +3.088x + 3.780  (19) 
with correlation coefficients 0.999 for curve A 
and 0.998 for curve B. Using the polyhedral 
approximations of Eqs. 6 and 7 with polyhe-

 
Figure 3. The Avaluator Trip Planner and Ca-
nadian accident frequencies (n = 203). Curves 
A and B represent color boundaries. Also 
shown are frequency contours of the bivariate 
normal distribution, with its center marked by a 
“+” symbol. 
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dron dimensions Δx = Δy = 0.01 resulted in the 
continuous prevention values (PV2) shown in 
Table 3. It is likely that prevention values PV2 
are close to the ultimate prevention values of 
the ATP. 

5.2 Prevention values: Obvious Clues Method 
Because we could not calculate preven-

tion values for the OCM in Canada directly, we 
used data from U.S. accidents (n = 252) as a 
surrogate dataset. Comparative results of the 
U.S. and Canadian accident datasets appear 
in Table 4. 

Avalanche accident data from the U.S. 
appears to be fairly consistent across fatal and 
non-fatal accidents, as evidenced by P1(US) 
values generally greater than 0.05. The num-
ber of people caught and fracture line width 
are the only exceptions. In contrast, there 
appear to be many differences in the Cana-
dian accident data between fatal and nonfatal 
accidents (P2(CAN)). One possible source of 
these differences may be the inclusion in the 
Canadian dataset of incidents where an ava-
lanche was deliberately triggered and no one 
was caught. Further evidence for over report-
ing of less serious incidents in the Canadian 
dataset can be seen in the values for P3(nonfatal), 
which shows many differences between U.S. 
and Canadian nonfatal accidents. Many of 
these differences vanish when we consider 
only fatal accidents, where reporting is gener-
ally of higher quality. Thus it appears that fatal 
accidents provide the most consistent stan-

dard for comparing the two datasets. 
Avalanche type, trigger type, number of 

people caught, slab depth and start zone in-
cline are roughly equivalent between the U.S. 
and Canadian datasets. Thus no adjustment 
appears necessary for these parameters in 
calculating PV for the OCM in Canada. 

Trigger classification in the Canadian 
dataset disproportionately reports fatal ava-
lanches as naturally triggered, a pattern that is 
not observed in Canadian nonfatal accidents 
or in U.S. accidents. Jamieson and Geldsetzer 
(1996: p.11) discuss reporting issues in Cana-
dian accidents with regard to this parameter. 
In general, it appears that about 7% of ava-
lanche accidents in the combined datasets 
result from natural releases and about 93% 
are triggered by the victims. 

Avalanche climate, danger rating and ele-
vation band of accidents appear to be funda-
mentally different between the two data sets. 
Thus any calculation of the prevention value 
for the OCM in Canada should take into ac-
count differences in these three parameters. 

Results for the comparison of start zone 
aspect in avalanche accidents are shown in 
Figure 4. Angular means for the U.S. and 
Canada are very nearly equal, but Canadian 
accidents show a greater circular standard 
deviation (114° versus 82° in the U.S. data, 
reflected in the length of the mean vector). 

We computed prevention values of the 
OCM in Canada by applying Eqs. 8 – 10. Re-
sults are shown in Table 5. Note that a thresh-
old of OC ≤ 3 appears to be relatively constant 
over these three parameters, with somewhat 
more variability for OC ≤ 4. Thresholds of five 
and above appear impractical as OCM deci-
sion guides, since prevention values vary sig-
nificantly (20% and higher) across the 
parameters shown in Table 5. 

5.3 Prevention values: 
combined ATP & OCM 

Combined prevention 
values of the various 
threshold combinations 
for the ATP and OCM are 
shown in Table 6. Con-
tinuous PV values for the 
ATP were used to calcu-
late PV′ since these val-
ues likely approximate the 
theoretical limit PV for the 
ATP. Thus, the prevention 
values shown in Table 6 
should be considered 
maximums that are ob-

Boundary PV1 PV2 

A 40 ± 7% 36% 
B 76 ± 6% 75% 

Table 3. Prevention values derived from dis-
crete (PV1) and bivariate (PV2) analyses. 

Parameter P1(US) P2(CAN) P3(nonfatal) P4(fatal) 

Avalanche type 0.766 0.438 0.016 0.762 
Trigger classification 0.181 < 0.001 0.676 < 0.001 
Trigger type 0.166 < 0.001 < 0.001 0.179 
Avalanche climate 0.155 0.918 < 0.001 0.021 
Danger rating 0.964 < 0.001 0.001 <0.001 
Elevation band 0.118 0.963 < 0.001 0.002 
Number caught 0.016 0.015 < 0.001 0.366 
FL width 0.037 < 0.001 0.031 0.027 
Slab depth: non-motor. 0.311 0.016 < 0.001 0.390 
Slab depth: motorized 0.153 0.277 0.200 0.267 
SZ incline 0.469 0.019 < 0.001 0.145 

Table 4. Comparison results from U.S. and Canadian accident 
datasets. P-values correspond to comparisons in Table 2 and Figure 
2. Statistically significant differences appear in bold type. 
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tained under ideal conditions. 
The combination of the ATP and OCM 

compares favorably with decision aids devel-
oped in Europe, and evaluated for use in the 
United States by McCammon and Haegeli 
(2006). European prevention values ranged 
from a low of 60±5% (Reduction Method) to a 
high of 86±4% (SnowCard). 

5.4 Low-frequency accidents 
The green region of the ATP in Figure 1 

and three or fewer clues in the OCM represent 
conditions where users are urged to use “nor-
mal caution.” Although they are rare, accidents 
do occur under these conditions.  

In comparing low-frequency and high-
frequency accidents in the ATP, we found no 
statistical difference between avalanche type 
(P = 0.624), trigger classifier (P = 0.316), trig-
ger type (P = 0.313), avalanche climate (P = 
0.521), elevation band (P = 0.294), number of 
people caught (P = 0.982), start zone incline 
(P = 0.149), or start zone aspect (both angular 
means lay within each other’s confidence in-
tervals). 

However, differences in slab depth, frac-
ture line width and danger rating suggest that 
low-frequency accidents have a number of 
characteristic features. 

Slabs in low-frequency accidents were 
shallower than in high-frequency accidents 
(mean difference 0.2 m, P = 0.002). Fracture 
lines appeared to be possibly smaller (P = 
0.071), with fracture line width in low-
frequency accidents averaging 68.8 m (σ = 
99.6 m), compared to 104.5 m (σ = 160.2 m) 
in high-frequency accidents. 

Low-frequency accidents under the OCM 
showed a similar pattern, with most occurring 
disproportionately during times of moderate 
hazard (P < 0.001). Generally fewer people 
were entrained in the avalanche in low-
frequency accidents (P = 0.064). 

Notably, there were four low-frequency 
accidents where large avalanches (FL width > 
100m) were triggered when OC ≤ 3. All of 
these cases involved deep instabilities, mod-
erate avalanche danger, and probable trigger-
ing from a shallow area on the slope.  

In both the ATP and the OCM, it appears 
that low-frequency accidents are of two types, 
both of which occur during periods of moder-
ate or lower avalanche danger. The first type 
of accident involves an isolated slab, usually 
small enough to catch a single person but 
large enough to bury them.  

 
Figure 4. Frequency histograms for start 
zone aspect in a) the U.S. dataset and b) 
the Canadian dataset. Angular mean vectors 
include the 95% confidence interval. 

Parameter ≤ 3 ≤ 4 

Climate 0.92±0.04 0.75±0.04 
Elev. Band 0.92±0.04 0.76±0.06 
Danger 0.88±0.05 0.69±0.06 

Avg. 0.90±0.04 0.74±0.05 

Table 5. Prevention values of the OCM 
calculated relative to Canadian acci-
dents. 

ATP boundary OC threshold PV ’± CI’ 

A ≤ 3 0.94 ± 0.04 
 ≤ 4 0.83 ± 0.06 

B ≤ 3 0.96 ± 0.04 
 ≤ 4 0.93 ± 0.07 

Table 6. Prevention values of the combined 
ATP and OCM.  
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The second type of low-frequency acci-
dent appears to involve a deep instability that 
is triggered from a shallow point in the snow-
pack. These avalanches release over large 
areas and in all cases have proven fatal for 
the victims. 

5.5 Future accident trends 
We’ve shown that the ATP and OCM 

combination has the potential to prevent many 
accidents. But how widespread will the use of 
this system need to be before an accident 
reduction trend can be detected, and how 
much time will elapse before such a trend is 
detectable? 

Table 7 shows the results of numerically 
solving Eq. 15 for the minimum detectable 
magnitude of change (H) and the percentage 
of avalanche victims who would need to be 
using the device in order to produce that 
change (= H÷PV′). For this calculation, we 
chose an intermediate prevention value (PV’ = 
0.90), which is roughly the midpoint between 
the most conservative threshold [ATP(B)+ 
OCM(≤3)] and the least conservative threshold 
[ATP(A)+OCM(≤4)]. We used the existing 
population of accidents for which ATP scores 
were known (n2=203) as a comparison basis, 
and chose the probability of Type I and Type II 
errors as α = β = 0.05. We also assumed that 
reporting rates (γ ) remained fixed at 
2003/2004 levels (about 21 well-documented 
accidents per year in Canada). 

As one would expect, accident reductions 
in the first one or two seasons following the 
introduction of the Avaluator will have to be 
substantial in order to be detectable – the 
proportion of accidents above the least con-
servative threshold must drop by 30% or 
more. This corresponds to more than a third of 
all avalanche victims using the Avaluator to 
guide their decisions. If we assume that ava-
lanche involvement is a random sampling 
process among the backcountry population, 
this translates into more than a third of all 
backcountry recreationists in Canada using 
the Avaluator routinely. More realistic is a 
reduction trend that becomes apparent in 
three to four years. Here, a minimum of one 
out of every four backcountry users would 
have to be making route decisions using the 
Avaluator. Beyond about five years, the mini-
mum detectable change flattens out signifi-
cantly, and accident reductions, unless they 
are pronounced, are unlikely to be apparent 
against the background of gradual changes in 
backcountry use. 

6. DISCUSSION 
It appears that both the ATP and OCM 

have the potential to significantly reduce ava-
lanche accidents. In the most permissive con-
figuration (ATP boundary A and OC ≤ 4), the 
combination of decision aids would prevent 
approximately as many accidents as the high-
est-performing European decision aid (Snow-
Card). In the most conservative configuration 
(ATP boundary B and OC ≤ 3), the combina-
tion of decision aids would prevent up to 98% 
of historical avalanche accidents in Canada. 

An important feature of the ATP and OCM 
is that their prevention value at the recom-
mended thresholds is not greatly affected by 
avalanche climate or elevation band. Moreo-
ver, the OCM retains a high prevention value 
even at avalanche danger ratings of low and 
moderate – a characteristic that makes it 
unique among decision aids for avalanche 
terrain. As such, it is well suited to novices 
who want a simple and universal tool to help 
them avoid most hazardous conditions. Of 
particular interest is the finding that anomalous 
accidents most commonly occur during peri-
ods of moderate or low hazard, and involve 
either small isolated slabs or deep instabilities. 
Teaching students to recognize these condi-
tions will serve to sharpen their understanding 
of snowpack and terrain issues.  

An important distinction between the 
ATP+OCM and other methods is that both 
tools are primarily awareness tools, rather 
than predictive tools. In other words, users 
cannot use these tools to predict if a slope will 
avalanche. They can, instead, use the tools to 
identify when they are entering a situation 
where their decisions are critical, and where 
they may need advanced skills to navigate the 
hazard. Neither the ATP nor the OCM is a 
go/no go decision aid. 

S H % victims 
1 0.41 46% 
2 0.29 32% 
3 0.24 27% 
4 0.21 23% 
5 0.19 21% 
7 0.17 19% 
10 0.16 18% 

Table 7. Number of seasons (S) before a 
minimum change in magnitude (H) becomes 
a detectable trend in avalanche accident 
prevention. Also shown is the minimum per-
cent of victims who would need to be using 
the Avaluator to effect this change. 
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Finally, if backcountry users widely adopt 
these decision aids, it may be possible to see 
accident reductions within several seasons. As 
usual, future trends will be easier to detect if 
reporting and documentation are improved. 
But ultimately, the most important metric of 
success will be how widely adopted these 
tools become, and whether or not they are still 
preventing accidents years from now. 

7. CONCLUSIONS 
As noted in the introduction, avalanche 

education is something of an experiment in 
how well we can learn from the past. In this 
paper, we’ve presented two tools for making 
decisions in avalanche terrain. These tools 
help users avoid mistakes that have taken 
lives in the past. We’ve shown that these deci-
sion tools are robust across avalanche cli-
mates, elevation bands and danger ratings, 
and when combined, can prevent around 90% 
of historical accidents in Canada. We’ve also 
shown that the use of these tools can result in 
accident prevention trends that are detectable 
with a few seasons. By that time, we should 
know how well these tools were embraced by 
users, and how many avalanche accidents 
they actually prevented. And then, we will 
know how well have learned from history. 
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