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ABSTRACT: A snow pack consists of weak layers embedded in strong layers. The interface bond 
between a weak layer and layers in between which it is sandwiched may not be strong and there 
may be regions that are not bonded. The un-bonded regions act as stress raisers from where 
propagation of crack can take place, in mode II, along the weak interface. The crack propagation 
along the interface under a shear and compressive load (due to the weight of skier) is studied 
using cohesive zone elements to describe the interface between the weak and strong layers. 
Four properties of the interface namely fracture energy in normal separation, fracture energy in 
shear separation, tensile and shear strengths are needed to characterize the cohesive elements. 
Tension and shear experiments on sieved snow with an ‘ice lens’ and shear experiments on field 
snow with a weak interface are performed to get an estimate of the cohesive zone properties. The 
cohesive model, incorporated in a finite element mesh, is used to determine the speed of crack 
growth along the interface. The average cracks speed depends on modulus of the layers on 
either side of interface and for the modulus values studied here, is between 40 m/s and 200 m/s. 
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1.  INTRODUCTION 
 
 A snow pack on the slope is rarely 
homogenous and consists of a number of 
layers of varying microstructure, properties 
and strength. Cracks in the weak layers 
embedded in the layered snow pack act as 
stress raisers which reduce the strength of the 
whole snow pack. The cracks may be formed, 
as the sandwiched weak layers may not 
adhere to the strong layers in some regions. In 
remaining regions a bond between the layers 
may be formed but its strength is much lower 
than the strength of layers themselves. Under 
sustained shear loads due to gravity load or 
overloads due to skier or fresh snowfall this 
weak bond strength may be easily exceeded 
and propagation of crack along the interface 
causes slab failure and an avalanche to occur. 
Interfacial failure as a mechanism of 
avalanche initiation is well recognized in 
literature. McClung (1987) has stated “first 
failure will occur in or at boundaries of the 
weak layer”.  
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Similarly, Schweizer (2002) has observed “the 
snow pack weakness is either a thin layer or a 
weak interface where two layers are poorly 
bonded due to at-least one of the two layers 
having weak layer properties”. He further 
attributes the grain size difference across the 
“fracture interface” to be responsible for the 
poor bonding between the two layers and the 
hardness difference between the layers “to 
favor stress/strain concentrations at the 
interface and promote fracture propagation”. 
In an earlier paper (Mahajan and Senthil, 
2005)  (MS) the authors modeled the pack as 
being made of two strong and one weak layer 
with cohesive zone elements at the interface 
between the layers to study interfacial fracture 
in snow on a slope under its self weight. This 
involved characterizing material on either side 
of bond line by suitable constitutive relations 
and using a cohesive surface constitutive 
relation for the bond itself. The cohesive 
surface constitutive law specified the relation 
between traction and displacement jump 
across the bond line and allowed for creation 
of new free surface. These relations were 
incorporated in a finite element (FE) mesh to 
study crack initiation and propagation. One of 
the major advantages of the technique is its 
ability to initiate a crack in the absence of an 
initial crack. In snow however, it was shown 
that an initial crack of a certain size is 
essential before the crack will grow. As 
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explained by MS the use of cohesive elements 
requires a very fine mesh with the smallest 
elements about 4-5 times the characteristic 
length (10

-5
 m). This restricted our study to a 

small slab of snow of length 2 m. Although the 
crown crack perpendicular to the slope did not 
initiate in the 2 m of slab it was however seen 
that the normal stress parallel to the slope 
increased with crack length. Rahulkumar et al. 
(2000) have used CZM to describe polymer 
interfacial fracture during a compressive shear 
test. They analyzed the transition from stable 
to unstable fracture and also investigated 
dynamic crack growth followed by crack arrest 
and stable crack growth, is investigated. 
Needleeman and Rosakis (1999) analyzed 
numerically crack growth along steel- PMMA 
interface under impact shear loading, using 
cohesive surface constitutive laws for the 
interface. For a sufficiently low impact velocity, 
the crack speed increased smoothly to the 
PMMA Rayleigh wave speed, whereas above 
a sharply defined transition impact velocity, 
the crack speed reached a value somewhat 
less than the PMMA dilational wave speed. 

It is often reported that very rapid 
avalanche initiation takes place sometimes 
when a skier accidentally steps on fragile 
layered snow. In such a situation the crack 
speeds are likely to be high causing very rapid 
crack growth and subsequent avalanche 
initiation. Crack velocities of the order of 10

2
 -

10
3
m/s have been predicted by Bader and 

Salm (1990) for a brittle crack in snow. 
Fracture propagation speed of 20 m/s, through 
a weak layer in snow on low angled terrains, 
were measured using geophones by Johnson 
et al.(2004).The authors explained this speed 
as the speed of flexural wave. McClung (2005) 
offered an alternative view, namely that 
propagation speeds were due to crack 
propagations speed of mode II and mode III 
fracture. He predicted the shear rupture 
speeds in the range 0.7–0.9 Cs = 0.7-0.9(G/ρ) 

which for shear modulus G = 0.3 MPa yielded 
shear rupture speeds in the range 28–36 (m/s) 
close to the ones measured by Johnson et al. 
The shear modulus is however an order of 
magnitude lower than the one used by Wilson 
et al. (1999) in their FE studies. Wilson et al. 
have performed plane strain static (FE) 
analysis to study on how warming in the top 
20 cm of a hard ‘spring’ like snowpack and a 
softer ‘mid-winter’ like snowpack influence the 
stresses and strains due to a skier load in 
weak layers 30 and 50 cm below the surface. 

The snow stiffness varied between 10 MPa for 
very hard snow to 0.25 MPa for very soft 
snow. A point load of 500N/m was applied to 
the model and it was the components of this 
load which were acting on the 6 m long snow 
pack. Recently, Herwijnen and Jamieson 
(2005) observed crushing of the weak layer 
due to fracture in the weak layer and from the 
displacement of the markers placed in the 
snow layer above the weak layers determined 
the crack velocity in snow in the range of 17-
26 m/s. 

Few numerical estimates for these 
crack velocities exist and here we use FE and 
CZM to study rapid crack growth and estimate 
the crack velocity in a snow slab under 
compressive and shear loads similar to the 
load conditions present during skiing. The 
weak layer is assumed to remain intact and 
crack propagation is due to rupturing of the 
bonds between the strong and weak layer. 
Since we are interested in crack speeds a 
dynamic analysis is performed. The load is 
suddenly applied at time t = 0 and even 
though it remains constant thereafter, the 
stresses within the pack change due to wave 
propagation and change in crack length. The 
load component along the slope in study of 
Wilson et al. was component of weight along 
the slope. Here, the component of force along 
the slope arises from friction between the ski 
and the snow. 
 The properties of the cohesive zone 
elements, used at the interface between the 
strong and weak layer, are estimated for two 
different types of interfaces by performing 
separate tension and shear experiments. In 
laboratory experiments the interface was an 
‘ice lens’ with sieved equi-temperature ET 
snow on either side. In the field snow the 
interface occurred at the boundary between 
decomposed and highly faceted grains. 
 
2. CONSTITUTIVE LAWS FOR SNOW 
LAYERS AND COHESIVE ELEMENTS 
 

Snow is a granular material with ice as 
matrix material and its constitutive behavior is 
a function of its microstructure (Mahajan and 
Brown, 1992). Constitutive law of Biot for 
porous aggregates has been used to study 
wave propagation in snow by Johnson (1990) 

and Albert (1993) and can be used to study 
dynamic crack propagation in avalanches. In 
most existing crack propagation models for 
avalanche initiation (e.g. Bader and Salm) the 
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porous snow is replaced by an equivalent 
elastic solid. While, in future, it may be more 
appropriate to include effects of porosity, here 
we presume snow layers as elastic solid. 
 
2.1 Principle of Virtual work and cohesive 
elements 
 

To determine the state of stress in the 
slab shown in figure 1, due to sudden 
application of constant uniformly distributed 
pressure and friction loads the principal of 
virtual work for dynamics is  

vdu.
ints s 2

t

u
2

dSu.TdS.TFdv:sv
ext v δρδ∆δδ ∫ ∫ ∫

∂

∂−=−∫   (1)      

Here s is the nominal stress tensor and is 
related to Cauchy stress by the relation s = F

-1
 

det Fσ, σ being the Cauchy stress. F is 
deformation gradient, V the volume in the 
reference configuration, ∆ is the virtual jump 
displacement across the cohesive element 
faces. V, Sext, Sint are the volume, external 
surface area and internal cohesive surface 
area of the body in the reference 
configuration. The density of the material is ρ 
and T is the traction vector.  

 
Figure 1. Schematic view of snow slab with a 
top interfacial crack used in FE simulation. ‘σ’ 
is the component of  load due to weight of 
skier,  ‘τ’ is the friction force. 
 
The various layers in slab are assumed to be 
isotropic elastic with two elastic constants E 
and υ  the Modulus of Elasticity and Poisson's 
ratio respectively. There can be a wide 
variation in properties of snow depending on 
its density and hardness [Mellor(1975)]. As 
equation 2 below shows the wave velocities 
(and therefore the crack propagation 
velocities) in elastic medium depend on its 

elastic modulus and density. The dilatational, 
shear and Rayleigh wave velocities in the 
strong and weak layer are calculated using 
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For snow, approximated as a non-

porous continuum, these velocities will vary 
depending on the type of snow. Simulations 
are done for three different values of the 
modulus of the strong (Es) and weak (Ew) 
layers. These are (i) Es = 10 MPa, and Ew = 1 
MPa (ii) Es = 1 MPa and Ew as 0.1 MPa. (iii) Es 
= 1 MPa and Ew = 0.75 MPa. For all cases the 

density ρ of strong layer is 300 kg/m
3
 and that 

of weak layer is 100 kg/m
3
. The various wave 

velocities corresponding to these moduli are 
given in table 1.  

 
Table 1.  Wave velocities in snow 

E 
(MPa) 

ρ 
(Kg/m

3
) 

CL CT CR 

10
7
 300 196.57 116.41 106.39 

300 62.16 36.81 33.64 
10

6
 

100 107.67 63.76 58.27 

7x10
5
 100 90.08 53.34 48.76 

10
5
 100 34.05 20.16 18.43 

 
Next, the constitutive law for zero 

thickness cohesive surface elements that are 
introduced between boundaries of elements, 
at the interface, in a normal finite element 
mesh is briefly presented. The cohesive 
elements, as considered by Xu and 
Needleman (1994), are characterized by a 
stress-opening displacement potential function 

φ  which allows for both tangential as well as 

normal separation.  
 
 

     
      
 

      3) 
 

Here φ n is the work of normal separation, q = 

φ n / φ t and φ t is the work of tangential 

separation. In the above expression the 
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subscripts n and t indicate the normal and 
tangent components respectively. Here n and 
t are normal and tangent respectively to the 
surface a given point in the reference 

configuration, then ∆n = n.∆ and ∆t = t.∆. 
The tractions T and displacement 

jump vectors ∆ across the surface are related 
by 

     
                      (4) 
 

As the cohesive surfaces separate, the 
magnitude of the traction at first increases to a 
maximum and then approaches zero with 
increase in separation. Xu and Needleman 
considered the constitutive relation for each 
cohesive surface as elastic, so the dissipation 
associated with separation is neglected. From 
equations (3) and (4) the cohesive surface 
tractions are written as 
 

 
 

     
    

   
    (5)      
 

The normal work of separation, φ n, and the 

shear work of separation, φ t can be written as  

nmaxen δσφ = ;  

tmax2

e
t δτφ














=               (6) 

where e = exp(1), σmax and τmax are the 
cohesive surface normal strength and 
tangential strength respectively, and δn and δt 
are the corresponding interface characteristic 
lengths. 
 
 
 
 
 
 
 
           
 
 
 
 
 
Figure 2. (a) Normal traction, Tn, across the 
cohesive surface as a function of normal 
separation δn. 

 
Figure 2. (b) Shear traction, Tt, across the 
cohesive surface as a function of tangential 
separation δt. 
 
Fig. 2a shows the normal traction Tn across 
the surface as a function of ∆n with ∆t ≡ 0. The 
maximum value of Tn is σmax and it occurs 
when ∆n = δn. Fig. 2b shows the shear traction 
Tt across the cohesive surface as a function of 

∆t with ∆n ≡ 0. The maximum value of Tt = 

τmax is attained when ∆t = δt / 2 . The 

cohesive surface elements are implemented 
numerically as a User Element in ABAQUS 
(Hibbit, 2005). A penalty approach is used to 
prevent interpenetration of layers under 
compressive loads. 

From above, it is clear that CZM can 

be described by four parameters φ n , φ t , σmax 

and τmax. In general the cohesive energy φ  is 

obtained from experiments and is equivalent 
to work of fracture. For snow, only limited 
information exists for these parameters. On 
basis of the experiments Kirchner et al. (2002) 
quote a value of 0.125 J/m

2
 for work of 

fracture for low density snow. No experimental 
data exists for interfacial fracture energy or 
strength and in our previous paper we used a 

value of 0.05 J/m
2
 for both φ n and φ n and 

0.00184 MPa and 0.004 MPa for normal and 
shear interface strengths. These values 
correspond to δn = δt = 10

-5
 m 

  
3. DETERMINATION OF COHESIVE ZONE 
PARAMETERS – EXPERIMENTS AND 
FINITE ELEMENT SIMULATIONS 
 
 To get a better estimate of the 
cohesive zone properties tension and shear 
experiments were performed on sieved snow 
with an ‘ice lens’ and in field conditions on 
snow with an interface between decomposed 
and highly faceted grains. The experiments on 
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layered snow were next simulated by finite 

element method to determine φn, φt, δn and δt as 
briefly discussed below.  
 
3.1 Sample preparation of laboratory 
specimens 
 

 Tension and simple shear 
experiments on layered samples were 
performed both in Cold laboratory and field 
conditions at -10

0
C. In the cold laboratory six 

samples of sieved snow were prepared for this 
experimental analysis. The samplers were 
filled with sieved snow (fine grained snow of 
grain size 0.5 mm to 1.0 mm). Cylindrical 
samples of 65 mm diameter and 150 mm 
height were chosen for tension tests.  
Rectangular samples of 150 mm x 75 mm x 70 
mm were chosen for shear tests.  
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Figure 3. Specimens for a) tension test and  
b) shear test. 
 
Each sample was initially made in two pieces 
of heights 80 mm and 70 mm for tension 
specimens and 40 mm and 35 mm for shear 
specimens (figure 3a and 3b).  

 A weak interface was made by putting 
a heated plate at the top surface of lower 
piece thus creating a water layer at this 
surface. This water layer was frozen rapidly 
and the two pieces were put together and 
allowed to sinter for seven days. The ice layer 
or lens introduced in the sample had an 
approximate thickness of 1.5 mm. The 
prepared samples were loaded in tension. 
Figure 4 shows two representative load-
deformation curves from tension tests 
conducted at a constant strain rate of 10

-4
/s 

and 10
-5

/s. Experiments on homogeneous 
sieved snow, without an interface, were also 
conducted to determine the modulus of the top 
and bottom layers.  
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Figure 4. Tension tests on layered snow with 
an ‘ice lens’ at two different strain rates. 
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Figure 5. Shear tests on layered snow with an 
‘ice lens’ at a strain rate of 10

-4
/s. E = 3 MPa, 

density = 330 kg/m
3
.  

Figure 5 shows load deformation curves for 
the sieved snow samples in plane shear for a 
strain rate of 10

-4
/s. 

In years 2005 and 2006 a range of 
field samples with different interfaces were 
also collected from various slopes and tested 
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under plane shear. Shear tests were done on 
the various interfaces found within the 
snowpack by cutting the snow bocks of size 
150mm x 75mm x 70mm. The grains on either 
side of  
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Figure 6. Shear tests on layered field snow 
with an interface between decomposed and 
highly faceted grains at a strain rate of 10

-4
/s.  

 
interface were of different type. The load 
deformation curve for snow with decomposed 
snow (felt like) on one side and highly faceted 
grains on other side of interface at a strain rate 
of 10

-4
/s is shown in figure 6. Samples were 

also tested at 10
-5

/s although the graphs are 
not shown here. In the experiments failure 
occurred at the interface and snow on either 
side of interface did not fail.  
 
3.2 Static FE simulation to predict cohesive 
zone properties 
 
 The load deformation experiments on 
layered snow are next simulated using static 
non-linear plane strain finite element (FE) 
analysis for shear specimens and axi-
symmetric analysis for tension specimens. 
Different interfaces have different cohesive 
properties and here estimates are established 
for tests shown in figures 4 to 6. As mentioned 
earlier figures 4 and 5 are for laboratory 
samples with an ice lens whereas figure 6 is 
for field specimens. E for laboratory snow was 
taken as 3 MPa based on experiments on 
homogeneous snow without interface. The 
weak interface was represented by cohesive 
elements. For tension tests at strain rate of 10

-

4
/s various values of cohesive zone 

parameters (φn and δn) were tried so that FE 
load-displacement curves matches with the 

experimental curves. An average value for φn 

= 0.05 J/m
2
 and δn = 10

-5
 m was obtained from 

this analysis. The slope of the load 
displacement curve depended on the Young’s 
modulus of snow whereas the displacement at 
which the load dropped depended on fracture 
energy and characteristic length values. For 

laboratory tests using the value of φn and δn 

determined in tension, a plane strain static FE 

analysis of shear test was performed. φt and δt 
were calculated by hit and trial so as to match 
the experimental and FE prediction of load 
displacement curve (fig.6). For both tension 
and shear the FE analysis had to be stopped, 
due to convergence problems, once the load 
dropped after reaching a peak and complete 
load-displacement curve beyond this load 
could not be traced. For shear tests, 
performed in the cold laboratory at a strain 

rate of 10
-4

/s an average value of φt was 0.025 

J/m
2
 and δt was 5 x 10

-6
 m.  

 For tests in the field, it was assumed 
that the modulus of layers on either side of 
interface was same and the slope of load 

displacement, φt and δt were suitably 
approximated to match the experimental and 
simulated load-displacement curves. Tension 
tests were not performed on the field snow. 
For interface between felt like and faceted 
crystals, obtained in the field, both simulated 
and experimental load displacement curves 

are shown in figure 6. For this interface φt was 

0.015 J/m
2
 and δt was 8 x 10

-6
 m.  Here, in 

simulations in section 4 for snow slab loading, 

we have used φn = 0.05 J/m
2
, φt = 0.01 J/m

2
, δn 

= δt = 10
-5

 m.  
 
4. SNOW SLAB LOADING AND CRACK 
GROWTH SIMULATIONS 
 

 The crack propagation problem in a 
slab with a moving skier at top involves solving 
contact problem between the skier and snow 
and simultaneously using cohesive elements 
for studying interfacial crack growth under 
dynamic conditions. This can be very time 
consuming as the use of cohesive elements 
requires a very fine mesh with the smallest 
elements about 5-10 times the characteristic 
length (10

-5
 m). Here, to reduce the solution 

time we do only a plane strain analysis (1 m 
wide) and assume the 2 m long slab as being 
made of three layers- two strong layers in 
between which a weak layer is sandwiched. 
The compressive force on snow is due to 
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normal component of weight of the skier and 
shear load due to friction between skies and 
snow are constant and uniformly distributed 
over one meter length. Coulomb friction is 
considered and coefficient of dynamic friction 
is taken as 0.1. A line load of 500 N/m 
uniformly distributed over a length of one 
meter was applied on the top, as shown in 
figure 1. For a slab on a uniform slope of 30

0
 

the total normal compressive load on slab is 
433 N and shear load is 43.3 N. For dynamic 
solution a fixed time step of 10

-5
 seconds was 

used although sometimes times it had to be 
reduced to 10

-6
 s for the solution to converge. 

The average solution time on xeon dual 
processor machine for the above problem is 
approximately two days. 

Two different slab thicknesses are 
analyzed. In first case the block is 1 m deep 
with a 5 mm thick weak layer, at 50 cms from 
bottom. In second case, the block is 15 cm 
deep and has a weak layer, 5 mm thick, at 4.5 
cms from the bottom. The bottom of the slab is 
assumed fixed to the ground. A weak interface 
occurs on both the sides of the weak layer and 
cohesive elements are placed at both the 
interfaces. With cohesive elements the crack 
can initiate and subsequently propagate even 
in the absence of an initial crack. An initial 
crack of 20 cms is introduced on the top 
interface at centre of the slab approximately. A 
convergence study was performed for various 
sizes of the cohesive elements and on the 
basis of this study size of these elements is 
taken as 10

-4
 m, i.e., ten times the cohesive 

element characteristic length. The 
convergence study concentrated on stresses 
and displacements in the cohesive region and 
we found no change in these with further 
refinement of element size.  

The first step in computing the crack 
speed is to record the crack location. For snow 
slab lengths considered here, the compressive 
loads at the top prevent opening of the 
interface and therefore the crack speeds are 
computed using shear separation ∆t and 
hence are shear crack speeds. The time at 
which for a given node along the cohesive 
surface ∆t first becomes greater than or equal 
to 5∆t defines shear crack location. The 5∆t 
opening defining the crack location is a bit 
arbitrary and it can happen during numerical 
calculations that the relative separation 
between many nodes may be at 4.99∆tduring 
a particular time increment and therefore 
these nodes will not be a part of the crack. In 

the next increment the relative separation 
between these nodes will exceed 5∆t and the 
velocity calculated for this increment on basis 
of crack location during this and previous 
increment may be very high whereas it may 
have been low during the last increment. To 
adjust for these fluctuations in velocity a linear 
best fit is done using velocity at five nodes.   
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Figure 7. Up-slope and down slope Crack 
velocity versus time for Es = 10

7
 Pa and Ew = 

10
6
 Pa.  

 
The crack velocity versus time graph 

is shown in figure 7 for Es = 10
7
 Pa and Ew = 

10
6
 Pa. The initial crack is there only at the top 

interface. The crack grows on either side of 
this initial crack. The initial down-slope crack 
velocities are high up to 7.5 x 10

-3
 s but 

subsequently vary between 30 and 100 m/s till 
9.5 x 10

-3
 s. At this time the crack velocities 

dip to 10 m/s before rising again to 95 m/s. A 
very similar behavior is observed during the up 
slope crack growth. The final up slope and 
down slope crack lengths at the top interface 
are 0.23m and 0.21 m.  The average crack 
velocities are 85m/s and 105 m/s and exceed 
the CR and Cs wave velocities of the weak 
layer but are below the CL of the weak layer 
and CR of the strong layer. At the lower 
interface, although there is no initial crack, a 
crack opens by itself at two locations 0.66m 
and 0.79 m from the left (or the down slope 
end) and right ends respectively of the slab. 
The down-slope crack opens at 7.4 x 10

-3
 s 

and reaches a peak velocity of 470 m/s before 
slowing down to 200 m/s at the time of 
fracture. The up slope crack opens later at 
7.78 x 10

-3
 s and has a peak velocity of 720 

m/s before slowing down to 230 m/s. The 
average crack velocities at this interface are 
supersonic exceeding all the wave velocities 
of the layers on either side of interface. The 
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lower interface crack velocities are much 
higher than the upper interface crack velocities 
and final fracture occurs at the lower interface. 
A similar simulation run for a thin slab of 
thickness 15 cms does not show any cracks at 
the bottom interface and failure occurs due to 
slipping at the top interface only. 
 Figure 8 shows the crack velocity 
versus time graph for Es = 10

6
 Pa and Ew = 10

5 

Pa. The initial down-slope speed is 42 m/s and 
up slope speed is 65 m/s. Subsequently, both 
cracks travel at similar speeds close to 40 m/s. 
At t = 18.7 the crack velocities start reaching 
3-4 m/s at 18.9 x 10

-3
 s. At the bottom 

interface shear separation starts but is small in 
magnitude. The simulation could not be 
completed as for the solution to converge, 
time steps below 10

-6
 seconds were required.  
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Figure 8. Up-slope and down slope Crack 
velocity versus time for Es = 10

6
 Pa and Ew = 

10
5
 Pa.  

 
Instead of having a middle layer with 

uniform properties, as tried above, the 5 mm 
thick middle layer was subdivided into three 
regions. The top and bottom 1.5 mm were 
modeled as solid continuum with E = 10

6
 Pa. 

The middle 2.0 mm was modeled as 
alternating columns of snow and air, each 1.2 
mm wide. The effective modulus of the middle 
layer using the rule of mixtures is 
approximately 7 x 10

5
 Pa.  The strong layer 

modulus is Es = 10
6
 Pa. The average down-

slope and up slope crack velocities at the top 
interface are 53 m/s and 40 m/s. The down 
slope velocity exceeds the CR of the weak 
layer but the up-slope velocity is below it.  The 
down-slope and up-slope crack lengths are 
0.42 m and 0.43 m respectively. As seen in 
figure 9 the cracks open at the lower interface 
in down-slope direction at 21.5 ms and 22.5 

ms in the up slope direction. The average 
velocities on this interface are 83 m/s and 200 
m/s. The latter exceeds all wave velocities of 
the layers on either side of interface.. The final 
crack lengths on this interface at time of 
fracture are 0.178 m down-slope and 0.218 m 
up-slope. The crack speeds at both the 
interfaces in figure 9 are much slower as 
compared to values in figure 7. Also, while in 
figure 7 the lower interface cracks opened 
quite early, in figure 9 they open quite late in 
comparison to upper interface cracks.  
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Figure 9. Up-slope and down slope Crack 
velocity versus time for Es = 10

7
 Pa and Ew = 7 

x10
5
 Pa.  

 
CONCLUSIONS 
  
 Cohesive zone model is used to study 
the interfacial fracture in layered snow and 
determine the crack velocities. Comparison of 
load-displacement curves from experiments 
on layered snow, with those from simulations 
provide an estimate of the cohesive 
properties. The shear and tension fracture 
energies are approximately 0.01 J/m

2
 and 

0.05 J/m
2
 and characteristic lengths obtained 

are about 10
-2

 mm. The crack velocities 
depend on the modulus of the layers and the 
behavior of crack depends on the thickness of 
the slab. In a slab of 1 m thickness the crack 
growth started from the initial crack present at 
the upper interface. However, some time later, 
shear cracks are also observed at the bottom 
interface. These cracks grow much faster and 
final failure is due to the fracture at the bottom 
interface. For layers of low modulus (Es = 10

6
 

and Ew = 10
5
 Pa) the initial crack velocities are 

approximately 40 m/s at the top interface. 
However, convergence difficulties prevented 
the solution from being completed. For Es = 
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10
6
 Pa and Ew = 7 x 10

5 
Pa the upper interface 

crack velocities are about 40-50 m/s. 
However, at the lower interface the velocities 
are much higher. In a slab of 15 cm thickness 
the crack growth is along the upper interface 
only and no cracks are seen at the bottom 
interface. The crack velocities along the top 
interface are similar to that for a thick slab. 
The crack propagation, for both thick and thin 
slabs, is mainly in mode II.  The average 
upper interface velocities are inter-sonic but 
lower interface velocities are supersonic and 
need investigation. 
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