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ABSTRACT: During the winters of 2000-01 and 2001-02, 36 spatial arrays of closely spaced small-
column-type stability tests were performed, each in a day. Each array consisted of 16 to 120, 30 cm by 30 
cm test columns arranged in a regular grid pattern, separated by 30 cm in both the up-slope and cross-
slope directions. The point stability, slab thickness and total snowpack depth data were analyzed with a 
new spatial clustering technique. Thirty-three percent of the arrays showed significant spatial clusters in 
either high or low point stability or both, which ranged in length 1.7 m to 3.8 m. Spatial clusters of high or 
low slab thickness, or both, were identified in 53% of the arrays, ranging in length from 1.7 m to 3.2 m. 
Spatial clusters in either high or low total snowpack depth were identified in 33% of the arrays, which 
ranged in length from 1.8 m to 2.7 m. These lengths are the maximum dimension of the clusters and, due 
to the extent of the arrays, considered to be minima.  
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1. INTRODUCTION 

 
This study focuses on the slope-scale spatial 

variability of snowpack properties and slab stability 
with respect to point stability using dynamic 
loading. Spatial scale refers to the characteristic 
length of a process (e.g. snowpack property), 
measurement or model (Blöschl and Sivapalan, 
1995; Hägeli and McClung, 2001). While the 
length scale of a process depends on the natural 
characteristics, the scale characteristics of 
measurements and models are a function of their 
design. Relevant scales for a study of spatial 
variability within avalanche start zones with 
respect to skier-triggering include the snowpack-
scale (10 cm to 5 m), the study plot-scale (5 m to 
30 m) and the slope-scale (5 m to 100 m). 
Snowpack properties and stability can vary 
substantially at the snowpack-scale (Jamieson, 
1995, p. 65-71), the study plot-scale (Landry et al., 
2004) and at the slope-scale (Campbell, 2004; 
Kronholm, 2004; Stewart, 2002). However, if 
stability tests sample all of a slope, the results are 
in fact variable but not random (Jamieson, 1995), 
which implies potential for spatial structure. 

Blöschl (1999) and Hägeli and McClung 
(2001) identify three scale attributes of 
measurements (support, spacing and extent) 
dubbed the scale triplet. Support is the area or 
volume integrated into a single measurement,  
spacing is the distance between measurements, 
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and extent is the distance spanned by a set of 
measurements. In order to measure the 
distribution of snowpack properties accurately, 
extent, support and spacing have to be chosen 
according to the natural scale characteristics of 
the phenomenon (Hägeli and McClung, 2001). For 
example, if the extent is smaller than the 
characteristic length of the process then the 
distributions appear as trends in the data (i.e. only 
part of the process is captured). If the extent is 
much larger than the characteristic length, but the 
support and spacing are insufficient, then the 
distributions appear as noise.  

Campbell and Jamieson (in press) state that 
the slope-scale variability in snowpack properties 
and stability is due to a combination of various 
processes that act on the snowpack with various 
correlation lengths (ξ). Causal processes are 
influenced by factors such as buried rocks 
(assumed ξ approx. 1 m to 5 m), wind drifting 
(assumed ξ approx. 2 m to 10 m), slope angle 
(assumed ξ approx. 2 m to > 50 m) and surface 
hoar formation (assumed ξ approx. 1 m to > 50 m). 
Not only are these lengths paramount for 
measurement scale (support, spacing and extent) 
design, they can also influence the scale of 
stability, including point stability. 

Using the same data as this study, Stewart 
(2002) identified 9 of 39 (23%) drop hammer 
arrays as having spatial clusters (i.e. groups of 
proximate tests) of high stability, low stability or 
both. Using the drop height that caused column 
fracture (DH) as an index of point stability, spatial 
cluster boundaries were defined as being straight 
for at least 3 adjacent tests, where: 
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1. the average DH of any three tests on one side 
of a straight section was ten or more 
centimeters different than the average DH of 
the three closest tests on the other side;  

2. and the average DH for the three tests inside 
a corner was ten or more centimeters different 
than the average DH of the four tests outside 
a corner. 
Stewart (2002) also showed that eight of the 

arrays had significant positive and eight arrays 
had significant negative Spearman rank 
correlations between DH and slab thickness (H). 
While a positive relationship (i.e. greater stability 
for thicker slabs) between stability (DH) and H is 
supported by slab mechanics (i.e. the stress from 
a skier decreases as H increases) and results 
from Campbell and Jamieson (in press), a 
negative relationship is difficult to explain. Stewart 
(2002, p. 59-60) hypothesized that the explanation 
involved the difference between a stress wave 
traveling through a test column with a confined 
cross section and a skier’s unconfined stress 
pattern. While a skier’s stress spreads laterally 
and rapidly diminishes in magnitude with 
increasing depth (Schweizer and Camponovo, 
2001), a stress wave traveling through a confined 
column is less likely to do so. This may explain 
why Campbell and Jamieson (in press) were able 
to detect predominately positive effects of H on 
stability with the rutschblock test, which has a 
cross-section large enough to incorporate a skiers 
stress pattern. 

The objectives of this study are: 
1. to try a new method for identifying spatial 

clusters in arrays for which variogram 
modeling did not reveal a range, probably due 
the limited extent and sample size of the 
arrays, and 

2. to use these clusters to identify possible 
causes of spatial variability in arrays for which 
correlation analysis did not reveal conclusive 
effects, again probably due to insufficient 
extent and sample size. 

 
2. METHODS 

 
2.1 Research area 

 
Field research for this study was carried out 

by graduate students and research technicians 
based out of two separate field stations in the 
Columbia Mountains of British Columbia (Figure 
1). The Rogers Pass field station is located in 
Glacier National Park, with many arrays on Mt. 
Fidelity. The Blue River field station is located in 
the Cariboo and Monashee Mountains with some 

arrays on Mt. St. Anne. Arrays were also 
performed in the Purcell Mountains about 10 km 
west of Golden near the Kicking Horse Mountain 
Resort. 

The Columbia Mountains are characterized 
by a transitional climate with a heavy maritime 
influence. The snowpack at treeline is usually 
deeper than 2 m throughout the winter and often 
includes persistent weak layers of buried surface 
hoar or faceted crystals (Hägeli and McClung, 
2003). 

Whenever possible field research was carried 
out in avalanche start zones; however, if 
avalanche danger compromised worker safety, 
sites with variability characteristic of avalanche 
start zones were used. 

 
Figure 1. Map of the Columbia Mountains showing 
the Blue River study area around Mt. St. Anne (M) 
and Glacier National Park (GNP) where the 
Rogers Pass field station is located. The third 
study area is in the Purcells near the Kicking 
Horse Mountain Resort (KHMR). 

 
2.2 Field methods 

 
A small-column-type stability test was used to 

estimate slab stability. The 30 cm x 30 cm test 
columns were arranged in a regular grid pattern 
separated by 30 cm in both the up-slope and 
cross-slope directions.  During the winters of 
2000-01 and 2001-02, 39 spatial arrays were 
performed, ranging in size from 16 to 120 tests 
(Stewart, 2002).  Three of these arrays were not 
used in this study due to insufficient data.  
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Similar to the rammrutsch device (Schweizer 
et al., 1995), a drop hammer device (Figure 2) was 
used to load the columns. An appropriate hammer 
mass (1 kg or 3 kg) was chosen based on practice 
test results then mounted on the graduated guide 
rod. The hammer was dropped from successive 5 
cm height increments, starting from 5 cm, until the 
fracture propagated along a weak snowpack layer 
across the entire test column. The drop height 
(cm) which causes the fracture to propagate (DH) 
was then recorded. If the fracture propagated 
when the device was gently placed on the column, 
before the hammer was dropped, a DH of 0.1 cm 
was assigned to that test. If the fracture did not 
propagate after the end of the guide rod was 
reached (60 cm) then a DH of 70 cm was 
assigned to that test. 

The drop hammer test is used as an index of 
point stability because Stewart (2002) found a 
strong linear correlation between the results of 
drop hammer tests and adjacent compression 
tests (Greene et al., 2004, p. 45-47; Canadian 
Avalanche Association, 2002, p. 33-34), the latter 
of which is a commonly used test of point stability. 

Total snowpack depth (HS) and slab 
thickness (H) were also measured for every test 
using a graduated probe pole or ruler, 
respectively. 
 

 
Figure 2. The drop hammer device with a base 
plate, graduated guide rod and hammer being 
used to load a test column. 

 
2.3 Statistical methods 

 
The spatial clusters were identified first by 

identifying numerical clusters, independent of 
position within arrays, and then assessing if the 
data in the numerical clusters were grouped 
spatially. 

Numerical clusters were identified with the k-
means clustering technique, which uses analysis 
of variance (ANOVA) calculations to determine an 
F-statistic (i.e. ratio of the variability between 
clusters to the variability within clusters). The 
number of clusters (k) was chosen to maximize F. 
ANOVA assumes that the clusters are normally 
distributed and have equal variances; however, 
Stewart (2002) showed that the data violated 
these assumptions. Therefore, numerical clusters 
were verified using the non-parametric Kruskal-
Wallis and Mann-Whitney U tests to a significance 
level of 0.05.  This means that there is less than a 
five percent chance of considering the clusters to 
be significantly different when, in fact, they are not 
(Type 1 error).  

Stewart (2002, p. 80) plotted variograms of 
test results for all 36 arrays. Variograms are 
graphs of the difference in DH quantified by the 
semi-variance versus the distance between two 
tests or lag distance. DH for all 36 arrays but three 
(the arrays performed on 28 February 2001, 6 
April 2001 and 23 November 2001) showed 
increasing semi-variance with lag distance, for lag 
distances less than 1.2 m. This suggests that 
spatial autocorrelation exists for adjacent tests. 
However, the extent of the arrays was insufficient 
to determine correlation lengths with the 
variograms. 

The Kruskal-Wallis test statistic (HKW) is 
essentially the average of the squared deviations 
of the cluster mean ranks from the average total 
rank with k minus one degrees of freedom, where 
greater values of HKW correspond to greater 
differences between clusters. The Kruskal-Wallis 
test is, however, only valid for three or more 
clusters; therefore, the Mann-Whitney U test was 
used to test independence in situations where k = 
2. The Mann-Whitney U test determines the 
significance of differences in average ranks for two 
clusters. For sample sizes greater than 20, the 
Mann-Whitney U-statistic approaches a normal 
distribution. It is therefore common to use the 
parametric z-value (i.e. larger absolute z-values 
correspond with greater differences in average 
cluster ranks) in combination with a p-value to 
express significance. However, both the Kruskal-
Wallis and the Mann-Whitney U test assume that 
the samples are independent and the variograms 
suggested otherwise because of spatial 
autocorrelation between stability tests. P-values 
are therefore not good measures of Type 1 errors 
for these arrays. 

Spatial clusters were selected that were likely 
indicative of physical processes.  We defined a 
unique spatial cluster as one that had at least four 
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adjacent tests (imposing a minimum length), which 
belonged to the numerical cluster with either the 
highest or lowest average DH for the array and 
was bounded by either an array boundary or by 
tests belonging to another numerical cluster. In 
addition, the cluster boundaries had no more than 
ten corners because we consider such clusters to 
be less indicative of a continuous physical 
process. Figure 3 shows examples of clusters that 
were rejected because they failed to meet these 
criteria.  

One disadvantage of the method is that 
spatial clusters are partly identified by numerical 
clusters that can include values outside the spatial 
cluster.  

 

 

 
Figure 3. Examples of numerical clusters that were 
rejected as spatial clusters because they did not 
meet the specified criteria. Each square 
represents a test column shaded according to the 
numerical cluster to which it belongs, where black 
represents the numerical cluster with the lowest 

average DH and white represents the numerical 
cluster with the highest average DH for the array. 
Drop heights (cm) are also indicated. The array 
shown in example (a) (performed on 4 January 
2002)) has a cluster of low DH that was rejected 
because the boundary has more than ten corners. 
The array shown in example (b) (performed on 25 
January 2001) has a cluster of high DH on the 
right side that met the criteria; however, the cluster 
of low DH in the middle of the array was rejected 
because the bottom left corner is not bounded 
entirely by tests belonging to another numerical 
cluster. 

 
The use of array boundaries as cluster 

boundaries, when we cannot guarantee cluster 
isolation, can be justified in several ways. First of 
all, the criterion of a unique spatial cluster 
encompassing at least four tests reduces the 
likelihood of identifying a spatial cluster when in 
fact there is no spatial structure whatsoever. 
Second, due primarily to time constraints while 
ensuring temporal variability was minimized, the 
extent of the arrays was often sufficient to capture 
only one cluster. The lengths of the clusters were 
therefore considered to be minima and no attempt 
was made to define maximum lengths. 

H and HS were also clustered in this manner. 
Cluster lengths can provide an estimate of the 
correlation lengths and hence the process scales 
associated with these snowpack properties. 
However, relating variable stability within 
avalanche start zones to causal processes can be 
difficult with current methods (Kronholm, 2004) 
due to the measurement and temporal scales of 
current field tests.  

Stewart (2002, p. 68) found no significant 
correlations between DH and sequence number 
(i.e. relative time at which each test in an array 
was performed) and therefore concluded that the 
test scores within arrays did not exhibit temporal 
variability. 

 
3. RESULTS 

 
Figure 4 shows the distribution of DH (cm) for 

all 36 arrays. Note that because two different 
hammers (1 kg or 3 kg) were used, the variability 
and magnitude of DH from one array cannot be 
compared to another. Twenty-three arrays had 
persistent weak layers, including buried surface 
hoar (17 arrays) and faceted crystals (6 arrays), as 
the primary failure layer. Thirteen arrays had non-
persistent weak layers, including decomposed and 
fragmented crystals (8 arrays), melt-freeze crusts 
(3 arrays) and rounded grains (2 arrays), as the 
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primary failure layer (Stewart, 2002). However, it is 
likely that there were faceted crystals associated 
with these melt-freeze crusts (Jamieson, 2006) but 
the facet layers may have been too thin to reliably 
observe. 

Table 1 lists both the numerical and spatial 
clustering results for DH. All but one (performed 
on 27 February 2002) of the 36 arrays had 
significant numerical clusters in DH, with k ranging 
from 2 to 7. Twelve (33%) of the 36 arrays had 
spatial clusters of high DH, low DH or both. The 
maximum dimension (l) of the clusters ranged 
from 1.7 m to 3.8 m, but this is often constrained 
by array boundaries. The l is measured either up-
slope, cross-slope or diagonally, whichever is 
greatest, within the confines of the cluster 
boundary based on each tests encompassing a 60 
cm by 60 cm area (i.e. in addition to the area of 
the test column each test represents 15 cm on all 
sides in both the up-slope and cross-slope 
directions). Neither the number nor the size of high 
DH clusters differed significantly from the number 
or size of low DH clusters. This suggests that 
encountering an area of relatively high stability is 
just as likely as encountering an area of relatively 
low stability, which is in contrast to early ideas in 
spatial variability of stability. Munter (1991, p. 111) 
opines that zones of high stability surrounded by 
low stability is more likely.  

The clustering methods used for this study 
approximately agreed with Stewart’s (2002) 
clusters in two arrays: 14 December 2001 (one of 
three clusters) and 7 February 2001, but not for 
seven other of Stewart’s (2002) arrays with 
clusters. 

Table 2 lists both the numerical clustering 
and the spatial clustering results for H. All of the 
36 arrays had significant numerical clusters in H, 
with k ranging from 2 to 14. Nineteen (53%) of the 
36 arrays had spatial clusters of high H, low H or 
both. The l of the clusters ranged from 1.7 m to 3.2 
m, roughly the same size as the spatial clusters in 
DH. Even though this shows that the processes 
that affect stability and H could have similar 
process scales and hence, H could be a predictor 
of variations in stability, only three arrays had 
spatial clusters of H in the same area as DH, and 
two showed a positive relationship while one 
showed a negative relationship. Neither the 
number nor the size of high H clusters differed 
significantly from the number or size of low H 
clusters. This suggests that encountering an area 
of relatively high slab thickness is just as likely as 
encountering an area of relatively low slab 
thickness.  

Table 3 lists both the numerical clustering 
and the spatial clustering results for HS. All of the 
36 arrays had significant numerical clusters in HS, 
with k ranging from 4 to 15. Twelve (33%) of the 
36 arrays had spatial clusters of high HS or low 
HS. The l of the clusters ranged from 1.8 m to 2.7 
m, somewhat lower than the range of l for DH and 
H. The number of clusters of low HS (8) was 
somewhat higher than the number of clusters of 
high HS (5). This is to be expected because the 
processes that cause variations in HS (e.g. buried 
boulders, logs and stumps) will only cause spatial 
clusters of low HS.  

 
Figure 4. Box plots of the drop height (cm) distribution for all 36 drop hammer arrays listed according to 
array date (yymmdd). The number of tests (N), median, inter-quartile range and range are shown.  
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Table 1. Clustering results for drop height (DH) for all 36 drop hammer arrays listed according to 
array date (yymmdd). Numerical clustering results including the number of clusters (k), the Kruskal-
Wallis statistic (HKW) and significance (ρ) for k ≥ 3 and the z-statistic (z) and Mann-Whitney 
significance (ρ) for k = 2 are shown. Spatial clustering results for clusters of high and low drop 
height (DH), including the number of tests (n) and the maximum dimension (l), are also shown. 
Respective results for more than one cluster per array are separated by a comma. 

Numerical clusters Spatial clusters 
Kruskal-Wallis Mann-Whitney High DH Low DH Date 

(yymmdd) k HKW ρ z ρ n l (m) n l (m) 
010105 2 ~ ~ 5.92 < 10-3 ~ ~ ~ ~ 
010112 4 27.3 < 10-3 ~ ~ ~ ~ ~ ~ 
010116 2 ~ ~ 6.01 < 10-3 ~ ~ 6 2.7 
010125 5 37.9 < 10-3 ~ ~ 4 2.2 ~ ~ 
010201 3 26.4 < 10-3 ~ ~ 4 2.2 ~ ~ 
010207 5 38.1 < 10-3 ~ ~ 8, 4 3.0, 2.2 ~ ~ 
010219 2 ~ ~ -4.32 < 10-3 ~ ~ ~ ~ 
010220 5 49.7 < 10-3 ~ ~ ~ ~ ~ ~ 
010224 2 ~ ~ 6.52 < 10-3 ~ ~ ~ ~ 
010228 2 ~ ~ -8.15 < 10-3 ~ ~ ~ ~ 
010307 3 30.8 < 10-3 ~ ~ ~ ~ 10 3.5 
010308 2 ~ ~ -6.32 < 10-3 ~ ~ ~ ~ 
010310 4 46.9 < 10-3 ~ ~ ~ ~ ~ ~ 
010314 4 73.4 < 10-3 ~ ~ ~ ~ ~ ~ 
010315 3 68.9 < 10-3 ~ ~ ~ ~ ~ ~ 
010322 3 36.4 < 10-3 ~ ~ ~ ~ 7 2.7 
010324 3 47.2 < 10-3 ~ ~ ~ ~ ~ ~ 
010406 2 ~ ~ 3.26 0.001 ~ ~ 11 3.8 
011123 2 ~ ~ 5.45 < 10-3 ~ ~ ~ ~ 
011214 2 ~ ~ -6.92 < 10-3 4 2.4 ~ ~ 
020104 3 35.1 < 10-3 ~ ~ ~ ~ ~ ~ 
020120 3 36.8 < 10-3 ~ ~ 5 2.4 7 3.0 
020125 7 44.2 < 10-3 ~ ~ ~ ~ ~ ~ 
020126 3 105.6 < 10-3 ~ ~ ~ ~ ~ ~ 
020130 2 ~ ~ -6.21 < 10-3 ~ ~ ~ ~ 
020204 2 ~ ~ 10.1 < 10-3 ~ ~ ~ ~ 
020207 5 32.3 < 10-3 ~ ~ ~ ~ 4 2.2 
020209 3 68.2 < 10-3 ~ ~ ~ ~ ~ ~ 
020214 3 31.7 < 10-3 ~ ~ ~ ~ ~ ~ 
020215 4 90.6 < 10-3 ~ ~ 6, 4 3.6, 1.7 8 3.0 
020217 4 74.1 < 10-3 ~ ~ ~ ~ ~ ~ 
020227 0 ~ ~ ~ ~ ~ ~ ~ ~ 
020321 5 41.6 < 10-3 ~ ~ ~ ~ ~ ~ 
020323 5 36.2 < 10-3 ~ ~ ~ ~ ~ ~ 
020326 3 29.0 < 10-3 ~ ~ ~ ~ ~ ~ 
020405 2 ~ ~ -6.39 < 10-3 7 3.2 6 3.0 

 
Table 2. Clustering results for slab thickness (H) for all 36 drop hammer arrays listed according to 
array date (yymmdd). Numerical clustering results including the number of clusters (k), the Kruskal-
Wallis statistic (HKW) and significance (ρ) for k ≥ 3 and the z-statistic (z) and Mann-Whitney 
significance (ρ) for k = 2 are shown. Spatial clustering results for clusters of high and low slab 
thickness (H), including the number of tests (n) and the maximum dimension (l), are also shown. 
Respective results for more than one cluster are separated by a comma. 

Numerical clusters Spatial clusters 
Kruskal-Wallis Mann-Whitney High H Low H Date 

(yymmdd) k HKW ρ z ρ n l n l 
010105 5 41.5 < 10-3 ~ ~ 6 3.0 5 2.7 
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010112 3 21.7 < 10-3 ~ ~ 8 3.2 ~ ~ 
010116 2 ~ ~ -6.32 < 10-3 ~ ~ ~ ~ 
010125 4 35.2 < 10-3 ~ ~ ~ ~ ~ ~ 
010201 7 30.3 < 10-3 ~ ~ 5 2.7 ~ ~ 
010207 4 36.4 < 10-3 ~ ~ 5 2.7 5 2.2 
010219 3 22.6 < 10-3 ~ ~ ~ ~ ~ ~ 
010220 4 46.4 < 10-3 ~ ~ ~ ~ 7 2.5 
010224 5 54.6 < 10-3 ~ ~ ~ ~ 6 3.2 
010228 2 ~ ~ 7.70 < 10-3 ~ ~ ~ ~ 
010307 2 ~ ~ -5.36 < 10-3 ~ ~ 5 2.2 
010308 3 56.7 < 10-3   7 2.5 8, 6 3.0, 2.2 
010310 2 ~ ~ 5.75 < 10-3 ~ ~ ~ ~ 
010314 7 76.3 < 10-3 ~ ~ ~ ~ ~ ~ 
010315 2 ~ ~ 7.39 < 10-3 ~ ~ ~ ~ 
010322 7 46.2 < 10-3 ~ ~ ~ ~ ~ ~ 
010324 6 61.2 < 10-3 ~ ~ ~ ~ ~ ~ 
010406 3 13.4 0.001 ~ ~ 6 2.2 4 2.2 
011123 3 31.2 < 10-3 ~ ~ ~ ~ ~ ~ 
011214 11 70.6 < 10-3 ~ ~ ~ ~ ~ ~ 
020104 14 40.8 < 10-3 ~ ~ ~ ~ 4 2.2 
020120 6 42.6 < 10-3 ~ ~ 4 2.2 ~ ~ 
020125 6 44.1 < 10-3 ~ ~ ~ ~ ~ ~ 
020126 7 116.2 < 10-3 ~ ~ 4 1.7 6 2.4 
020130 8 53.9 < 10-3 ~ ~ ~ ~ ~ ~ 
020204 6 118.6 < 10-3 ~ ~ ~ ~ ~ ~ 
020207 7 33.2 < 10-3 ~ ~ ~ ~ 4 2.4 
020209 8 84.6 < 10-3 ~ ~ ~ ~ 8 3.0 
020214 10 38.5 < 10-3 ~ ~ 4 2.2 ~ ~ 
020215 7 95.3 < 10-3 ~ ~ ~ ~ 5 2.2 
020217 6 85.4 < 10-3 ~ ~ ~ ~ ~ ~ 
020227 3 53.6 < 10-3 ~ ~ ~ ~ ~ ~ 
020321 4 38.2 < 10-3 ~ ~ ~ ~ 5 3.0 
020323 4 33.1 < 10-3 ~ ~ 8 2.4 ~ ~ 
020326 4 38.1 < 10-3 ~ ~ 4 2.4 ~ ~ 
020405 4 56.3 < 10-3 ~ ~ ~ ~ ~ ~ 

 
Table 3. Clustering results for total snowpack depth (HS) for all 36 drop hammer arrays listed 
according to array date (yymmdd). Numerical clustering results including the number of clusters (k), 
the Kruskal-Wallis statistic (HKW) and significance (ρ) for k ≥ 3 and the z-statistic (z) and Mann-
Whitney significance (ρ) for k = 2 are shown. Spatial clustering results for clusters of high and low 
snowpack depth (HS), including the number of tests (n) and the maximum dimension (l), are also 
shown. Respective results for more than one cluster are separated by a comma. 

Numerical clusters Spatial clusters 
Kruskal-Wallis Mann-Whitney High HS Low HS Date 

(yymmdd) k HKW ρ z ρ n l n l 
010105 15 43.8 < 10-3 ~ ~ ~ ~ 4, 4 2.2, 1.8 
010112 15 28.9 0.011 ~ ~ ~ ~ 5 2.5 
010116 7 48.2 < 10-3 ~ ~ ~ ~ 4 2.2 
010125 5 36.6 < 10-3 ~ ~ ~ ~ ~ ~ 
010201 14 30.8 0.004 ~ ~ ~ ~ 5 2.2 
010207 13 38.8 < 10-3 ~ ~ ~ ~ 4 2.2 
010219 9 28.5 < 10-3 ~ ~ ~ ~ ~ ~ 
010220 10 52.4 < 10-3 ~ ~ 5 2.2 ~ ~ 
010224 5 54.8 < 10-3 ~ ~ ~ ~ 4 2.2 
010228 9 72.3 < 10-3 ~ ~ ~ ~ ~ ~ 
010307 7 38.2 < 10-3 ~ ~ ~ ~ ~ ~ 
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010308 10 62.3 < 10-3 ~ ~ ~ ~ ~ ~ 
010310 8 47.7 < 10-3 ~ ~ ~ ~ ~ ~ 
010314 6 75.1 < 10-3 ~ ~ 7 2.7 ~ ~ 
010315 15 73.6 < 10-3 ~ ~ ~ ~ ~ ~ 
010322 8 45.4 < 10-3 ~ ~ ~ ~ ~ ~ 
010324 8 62.7 < 10-3 ~ ~ 5 2.7 ~ ~ 
010406 6 14.4 0.013 ~ ~ ~ ~ ~ ~ 
011123 11 38.6 < 10-3 ~ ~ ~ ~ ~ ~ 
011214 9 69.7 < 10-3 ~ ~ ~ ~ ~ ~ 
020104 7 39.9 < 10-3 ~ ~ ~ ~ ~ ~ 
020120 9 43.9 < 10-3 ~ ~ ~ ~ ~ ~ 
020125 10 45.0 < 10-3 ~ ~ ~ ~ ~ ~ 
020126 8 116.5 < 10-3 ~ ~ ~ ~ ~ ~ 
020130 10 55.4 < 10-3 ~ ~ ~ ~ ~ ~ 
020204 8 119.6 < 10-3 ~ ~ ~ ~ ~ ~ 
020207 9 34.5 < 10-3 ~ ~ ~ ~ ~ ~ 
020209 8 86.1 < 10-3 ~ ~ ~ ~ ~ ~ 
020214 7 37.6 < 10-3 ~ ~ ~ ~ ~ ~ 
020215 8 101.0 < 10-3 ~ ~ ~ ~ ~ ~ 
020217 7 85.1 < 10-3 ~ ~ 4 2.2 ~ ~ 
020227 4 55.5 < 10-3 ~ ~ ~ ~ ~ ~ 
020321 5 44.1 < 10-3 ~ ~ ~ ~ ~ ~ 
020323 4 35.7 < 10-3 ~ ~ 5 2.5 ~ ~ 
020326 5 37.0 < 10-3 ~ ~ ~ ~ ~ ~ 
020405 9 69.9 < 10-3 ~ ~ ~ ~ 4 2.4 

 
3.1 Example arrays 

 
The array shown in Figure 5 was performed 7 

February 2001. The primary failure layer was 
decomposed and fragmented crystals.  Two 
unique spatial clusters of high DH were found for 
this array: one in the upper left corner with n = 8 
and l = 3.0 m and one in the lower right corner with 
n = 4 and l = 2.2 m. The cluster in the lower right 
corner corresponded with a spatial cluster of high 

H values with n = 5 and l = 2.7 m. This suggests 
that the thicker slab could have resulted in higher 
stability. 

The array shown in Figure 6 was performed 
22 March 2001. The primary failure layer was 
indicated as a melt-freeze crust. A spatial cluster 
of low DH was found in the middle of the array, 
with n = 7 and l = 2.7. This was the only spatial 
cluster of DH that was not bounded on at least one 
side by the edge of the array.  

 
Figure 5. Drop heights (cm) for the array performed on 7 February 2001. Each square represents a test 
column shaded according to the numerical cluster to which it belongs, where black represents the 
numerical cluster with the lowest average DH and white represents the numerical cluster with the highest 
average DH for the array. Two clusters of high drop heights are indicated: one consisting of eight tests in 
the upper left corner and one consisting of four tests in the lower left corner.
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Figure 6. Drop heights (cm) for the array 
performed on 22 March 2001. Each square 
represents a test column shaded according to the 
numerical cluster to which it belongs, where black 
represents the numerical cluster with the lowest 
average DH and white represents the numerical 
cluster with the highest average DH for the array. 
A cluster of seven tests with low drop heights in 
the middle of the array is indicated. 

 
4. CONCLUSIONS 

 
A high level of spatial variability of point 

stability exists in avalanche start zones with, in 
most cases using current techniques, indefinable 
spatial structure. In this and other studies (e.g. 
Kronholm et al., 2004), few arrays exhibit spatial 
structure. Perhaps the number of data and extent 
were insufficient to detect the structure, or the 
spacing was not matched to the process scales. 

Using a new technique, spatial clusters in 
point stability were identified in 33% of the arrays 
with lengths ranging from at least 1.7 m to 3.8 m. 
Spatial clusters in slab thickness were identified in 
53% of the arrays with lengths ranging from at 
least 1.7 m to 3.2 m. Spatial clusters in total 
snowpack depth were identified in 33% of the 
arrays with lengths ranging from at least 1.8 m to 

2.7 m. These lengths are considered to be minima 
due to the extent of the arrays. 

Clusters in H did not consistently correspond 
with clusters in DH. Therefore, the results could 
not suport Campbell and Jamieson’s (in press) 
conclusion that slab thickness can have a positive 
effect on stability with respect to skier triggering 
(rutschblock score). Perhaps there is a minimum 
size and extent to detect the effect of slab 
thickness and incline on point stability or there is a 
problem with the difference between the small 
confined column of the DH test (load area = 
column cross section) and the much less confined 
column of the rutschblock test (load area << 
column cross section). This implies while small 
column tests may be good at finding weak layers, 
tests with columns larger than the load area may 
be better for assessing stability since stress waves 
are less confined by column cross section. Also, 
fracture propagation is better represented in tests 
with columns larger than about 1 m2 (Schweizer et 
al., in press).  

A new clustering method was developed that 
detects clusters in arrays with a limited number of 
tests.  

 
5. REFERENCES 

 
Blöschl, G. and M. Sivapalan. 1995. Scale issues 

in hydrological modeling – a review. 
Hydrological Processes, 9(3-4), 251-290. 

Blöschl, G. 1999. Scaling issues in snow 
hydrology. Hydrological Processes, 13(14-15), 
2149-2175. 

Canadian Avalanche Association. 2002. 
Observation guidelines and recording 
standards for weather, snowpack and 
avalanches. Canadian Avalanche Association, 
Revelstoke, BC, Canada, 77 pp. 

Campbell, C. 2004. Spatial variability of slab 
stability and fracture properties in avalanche 
start zones. M.Sc. thesis, Dept. of Civil 
Engineering, University of Calgary, Calgary, 
Alberta, Canada, 245 pp. 

Campbell, C. and B. Jamieson. In press. Spatial 
variability of slab stability and fracture 
characteristics within avalanche start zones. 
Cold Regions Science and Technology.  

Green, E., K. Birkeland, K. Elder, G. Johnson, C. 
Landry, I. McCammon, M. Moore, D. Sharaf, 
C. Sterbenz, B. Tremper and K. Williams. 
2004. Snow, weather and avalanches: 
observational guidelines for avalanche 
programs in the United States. American 
Avalanche Association and Forest Service 

52



National Avalanche Center, Pagosa Springs, 
Colorado, USA, 136 pp. 

Hägeli, P. and D. M. McClung. 2001. A new 
perspective on computer-aided avalanche 
forecasting: scale and scale issues. 
Proceedings of the 2000 International Snow 
Science Workshop, Big Sky, Montana, USA. 

Hägeli, P. and D. M. McClung. 2003.  Avalanche 
characteristics of a transitional snow climate—
Columbia Mountains, British Columbia, 
Canada. Cold Regions Science and 
Technology, 37, 255– 276. 

Jamieson, B. 1995. Avalanche prediction for 
persistent snow slabs. PhD Thesis, Dept. of 
Civil Engineering, University of Calgary, 275 
pp.  

Jamieson, B. 2006. Formation of refrozen 
snowpack layers and their role in slab 
avalanche release. Reviews of Geophysics 
44, RG2001, doi:10.1029/2005RG000176. 

Krajewski, S. A. and B. L. Gibbs. 2001. 
Understanding contouring: a practical guide to 
spatial estimation using a computer and 
variogram interpretation. Gibbs Associates, 
Boulder, Colorado, U.S.A., 142 pp. 

Kronholm, K. 2004. Spatial variability of snow 
mechanical properties with regard to 
avalanche formation. Ph.D. Dissertation, Dept. 
of Geography, University of Zurich, Zurich, 
Switzerland, 187 pp. 

Kronholm, K. and J. Schweizer. 2003. Snow 
stability variation on small slopes. Cold 
Regions Science and Technology, 37, 453-
465. 

Kronholm, K., M. Schneebeli and J. Schweizer. 
2004. Spatial variability of micropenetration 
resistance in snow layers on a small slope. 
Annals of Glaciology, 38,  202–208. 

Landry, C., K. Birkeland, K. Hansen, J. Borkowski, 
R. Brown and R. Aspinall. 2004. Variations in 
snow strength and stability on uniform slopes. 
Cold Regions Science and Technology, 39, 
205-218. 

Munter, W. 1991. Neue Lawinenkunde – Ein 
Leitfaden für die Praxis. Verlag des Schweizer 
Alpen-Clubs (SAC), Bern, Switzerland.  

Schweizer, J., M. Schneebeli, M. Fierz, and P. M. 
B. Föhn. 1995. Snow mechanics and 
avalanche formation: Field experiments on the 
dynamic response of snow cover. Surveys of 
Geophysics, 16(5-6), 621-633. 

Schweizer, J.  and C. Camponovo. 2001. The 
skier's zone of influence in triggering slab 
avalanches. Annals of Glaciology, 32, 314-
320. 

Schweizer, J., I McCammon and B. Jamieson. In 
press. Fracture mechanics and snow slope 
stability evaluation. Proceedings of the 2006 
International Snow Science Workshop, 
Telluride, Colorado, USA. 

Stewart, W. K. 2002. Spatial variability of slab 
stability within avalanche starting zones. M.Sc. 
Thesis, Dept. of Geology and Geophysics, 
University of Calgary, Calgary, Alberta, 
Canada, 100 pp. 
 

6. ACKNOWLEDGEMENTS 
 
For field work and analysis we would like to 

thank Kyle Stewart. For field work we would like to 
thank Tom Chalmers, Michelle Gagnon, Ryan 
Gallagher, Alan Jones, Paul Langevin, Jenn 
Olsen, Ilya Storm, Alec van Herwijnen and Antonia 
Zeidler. 

For support we are grateful to the Natural 
Sciences and Engineering Research Council of 
Canada, Helicat Canada, Canadian Avalanche 
Association, Mike Wiegele Helicopter Skiing, 
Canada West Ski Area Association, and Parks 
Canada. 

 

53




