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ABSTRACT: Snow profile interpretation has developed in the last few years from being based on 
experience into a semi-quantitative scientific method. Emphasizing structural rather than mechanical 
instability, threshold values were developed for key parameters such as weak layer grain size and 
hardness, and differences in grain size and hardness between layers. Despite promising attempts so far it 
has not been shown that this method works to quantitatively interpret snow profiles, in particular if the 
principal weakness is unknown. Our aim was to provide an easy and robust method based on the 
threshold sum approach to assess snowpack stability based on layer properties. Second, we investigated 
whether that method is also suited to find the principal weakness (in case it is unknown) and assess the 
probability for a skier-triggered avalanche on this weakness. Our data set consists of 500 manual snow 
profiles observed over 16 years on skier tested and skier triggered avalanche slopes from both Western 
Canada and Switzerland. A weighted threshold sum with the failure layer depth as independent variable 
scored highest (77% for the learning data set, 65% for the test data set). Detection of potential critical 
layers proved to be less successful, in particular for the Swiss profiles. If the principal weakness was 
unknown, the stability classification for the potentially critical layers agreed with the observed stability for 
the Swiss profiles in about 53% and for the Canadian profiles in about 62% of the cases. The results 
emphasize that stability assessment should include- besides stability tests that help locate the principal 
weakness - analysis of snow layer properties, in particular grain size, type and hardness. The proposed 
threshold sum considering seven variables is well suited for profile analysis of manual profiles by 
practitioners. Stability classification of snow profiles simulated by snow cover models such as 
SNOWPACK will need further adaptation, in particular for application in transitional snow climates. 
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1. INTRODUCTION 

Stability evaluation for avalanche 
forecasting relies on weather data, snowpack data 
and avalanche observations. Snowpack data in 
the form of snow profiles and stability tests are the 
crucial information in the absence of avalanche 
occurrence data to derive snow stability. Stability 
tests are powerful, but occasionally give 
misleading results, i.e. false-stable predictions. 
Also, stability test results seem to be more 
susceptible to spatial variations of snowpack 
properties than e.g. layer characteristics as grain 
type and size (e.g. Kronholm, 2004). 

McCammon and Schweizer (2002) 
proposed to complement information on 
mechanical instability such as the shear strength 
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or stability test scores with data on structural 
instability such as grain type and size, or hardness 
difference across a potential failure interface. 
Structural instability was defined as the tendency 
of the surrounding snowpack to concentrate shear 
stresses at the weak layer or interface and to 
propagate a shear fracture along that layer or 
interface. They showed that, while no single 
parameter was a reliable predictor of instability, a 
simple count of the variables that were in a critical 
range (threshold sum) provided an approximate 
indicator of unstable conditions. No comparison to 
stable profiles was given. It was not Clear whether 
the threshold sum can discriminate between 
stable and unstable conditions. 

Based on a comparison of snow profiles 
from skier triggered avalanches with profiles from 
skier tested slopes that did not release Schweizer 
and Jamieson (2003) showed that there are 
significant variables to predict instability and 
proposed corresponding critical ranges for each 
variable. Besides the RB score they found the 
following snow stratification variables to be 
indicative of snowpack instability: difference in 
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grain size across the failure interface, failure layer 
grain size, difference in hardness across the 
failure interface and failure layer hardness. 
However, the multivariate classification tree they 
proposed was difficult to apply for operational 
forecasting and they did not provide any 
verification of their findings. In addition, their whole 
analysis was based on the assumption that the 
critical failure layer was known, i.e. a mechanical 
test was required to localize the critical weakness. 
This restriction hinders e.g. the application of their 
results to simulated snow cover profiles. 

The aim of the present study is to combine 
the approaches by McCammon and Schweizer 
(2002) and Schweizer and Jamieson (2003) to (1) 
provide a robust and easy to use method to 
assess the probability of skier triggering from 
snow layer properties at the failure interface, and 
(2) demonstrate that the method can also be used 
to find potential failure layers when the location of 
the critical failure layer is unknown, to identify 
additional weaknesses that did not show up in the 
stability test, or to apply the method to snow 
profiles simulated by a snow cover model such as 
e.g. SNOWPACK (Lehning et al., 1999). 

2. DATA 

We used snow profile data from the 
Columbia Mountains of western Canada and the 
Swiss Alps collected during the winters of 1988-89 
to 2003-04. About half of the profiles were taken at 
the fracture line of or on slopes adjacent to skier- 
triggered avalanches; these were called "unstable" 
profiles. The other half were so-called "stable" 
profiles observed on slopes that were skied but no 
avalanche was released. We split the data set into 
a learning data set of 424 cases, the same as 
used by Schweizer and Jamieson (2003), and a 
test data set of 109 profiles as shown in Table 1. 

3. METHODS 

As classifiers the five variables were used 
that showed very high significance in the analysis 

Table 1: Characteristics of snow profile data 
sets used for model development and testing 
(number of profiles). 

Data set Count~ Stable Unstable 
learning Canada 99 117 

Switzerland 105 103 
test Canada 38 16 

Switzerland 30 25 

by Schweizer and Jamieson (2003): Rutschblock 
(RB) score, failure layer (FL) grain size, failure 
layer hardness and differences in grain size and 
hardness across the failure interface. These were 
completed with failure layer grain type which also 
was highly significant in their analysis and failure 
layer depth. Failure layer depth was introduced to 
take into account that the probability of skier 
triggering strongly decreases with increasing slab 
thickness (Schweizer and Camponovo, 2001; 
Schweizer and Jamieson, 2001). 

The above variables are standard 
snowpack observations and described in Colbeck 
et al. (1990) and CAA (2002). For failure layer 
grain size the average grain size in mm was used. 
Failure layer hardness was analyzed using the 
hand hardness index from 1 to 6 for Fist (F), Four- 
finger (4F), One-finger (1F), Pencil (P) and Knife 
(K). Intermediate values were allowed, e.g. 2-3, or 
2-. 

For failure layer grain type primary and 
secondary grain type were considered for 
classification into either non-persistent or 
persistent as proposed by Jamieson and Johnston 
(1995). Rutschblock tests were performed as 
described in Schweizer (2002). in the case of the 
profiles from skier-triggered avalanches 
rutschblock tests were often not available. 
Occasionally, a compression test (Jamieson, 
1999) was performed instead. Compression test 
scores were converted into comparable 
rutschblock scores. 

Differences in grain size and hardness 
were calculated between the failure layer and the 
adjacent layer, i.e. across the failure interface. If 
the location of the interface was recorded the layer 
with the lower hardness index was chosen as the 
failure layer. If there was no difference in 
hardness, the layer with larger grain size was 
considered as the failure layer, and if there was no 
difference at all the lower layer was chosen as 
failure layer. If the failure interface was not 
reported, but the failure layer was known, first the 
difference in hardness and second the difference 
in grain size were considered to chose either the 
layer above or below the failure layer as the 
adjacent layer. 

For each variable stable and unstable 
data were contrasted to find a split or threshold 
value that predicts whether the case under 
consideration belongs into the stable or the 
unstable category. To find the threshold value the 
classification tree method was used (Breiman et 
al., 1998). For each of the seven variables or 
classifiers a binary threshold function was 
determined. The outcomes (0 or 1 for each 

193



classifier) were then combined by a simple or 
weighted sum. This provided a value, also called 
threshold sum, between e.g. 0 and 7 for the case 
of unweighted summing. Increasing threshold sum 
should relate to increasing instability. By applying 
the classification tree method to the threshold sum 
a split value was determined with respect to stable 
or unstable. As failure layer depth is not the same 
type of classifier as the other variables it was also 
attempted to not include the failure layer depth 
into the threshold sum, but into the final 
assessment as second independent variable 
besides the threshold sum. This approach, based 
on the proposal by McCammon and Schweizer 
(2002), is comparable in the unweighted case with 
simply ticking boxes and counting the number of 
ticks. This is known to be a robust method of 
combining multiple classifiers that often 
outperforms more sophisticated expert systems, 
and it is first of all simply applicable by 
practitioners. Also it gives a range of instability 
(e.g. 1 to 7) which allows for indication of quasi- or 
transitional stability. 

To describe the performance of the 
different models the following measures for 
categorical forecasts were used: accuracy (or 
perfect forecast or hit rate, or probability correct 
forecast: PFC), the unweighted average accuracy, 
the probability of detection: POD, the false alarm 
rate: FAR, and the true skill score (or so-called 
Hanssen and Kuipers discriminant: POD-FAR) 
(Purves et al., 2003; Wilks, 1995). 

With the definitions used in contingency 
tables (Table 2) the measures are calculated as 
follows: 

Accuracy or PFC = a + d 
/ I  

Unweighted average acc. = 0.5 a + c b + 

Probability of detection POD = d 
b+d 

False alarm rate FAR = c 
G + C  

Table 2: Contingency table 
(total of cases: n = a + b + c + d) 

forecasted stable 

unstable 

observed 
stable unstable 
a" correct b 
stables misses 
c" false d" hits 
alarms 

True skill score P O D -  FAR = d c 

b + d  a + c  

The accuracy measures the overall 
success of a model (correct classification of non- 
events and events). The unweighted average 
accuracy accounts better for rare events than the 
accuracy. The true skill score is a measure of the 
forecast success at discriminating between stable 
and unstable cases correctly. Misses or false- 
stable predictions are given by 1-POD. 

4. RESULTS 

We first report on stability classification by the 
threshold sum method and then on detection of 
critical failure layers. The stability classification 
was done for the combined Swiss-Canadian 
sample, whereas layer section was done 
separately. 

4.1 Stability classification 
Table 3 shows the critical ranges that 

were used for the initial classification by the 
unweighted threshold sum. For the first five 
variables the critical ranges or threshold values 
were the ones given by Schweizer and Jamieson 
(2003). For the failure layer grain type the critical 
range was defined as persistent and for the failure 
layer depth the critical range was chosen 
arbitrarily based on the 5 t" percentiles and the 95 t" 
percentiles (middle 90%). 

A univariate analysis showed that the RB 
score was the classifier with the highest accuracy 
and best discriminated between stable and 
unstable cases. The second and third best 
classifiers considering the true skill score were the 
difference in grain size and the difference in 
hardness across the failure interface. 

A classification tree with the unweighted 
threshold sum as single independent variable 
suggested a threshold sum of 5 as split value, i.e. 
< 5 stable, > 5 unstable. As can be seen from 
Figure 1 the threshold sum seems to discriminate 
quite clearly between stable and unstable (non- 
parametric Mann-Whitney U-Test, p < 0.001). The 
accuracy measures of this model are given in 
Table 4. if the failure layer depth was omitted the 
different accuracy scores were only slightly 
different. However, if the rutschblock score was 
not considered, particularly the POD and the true 
skill score decreased. 

Alternatively, the failure layer depth can 
be considered as second independent variable 
besides the threshold sum in the final 
classification tree. This revealed first of all a split 
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Table 3: Critical ranges of variables and weights 

Variab(e or classifier Thresho!d, ~ crit i~l range ........ Weight 
RB score 
Difference in grain size (mm) 
Failure layer grain size (mm) 
Difference in hardness 
Failure layer hardness 
Failure layer grain type 

<4 2 
>`0.75 1 
> 1.25 1 
>-1.7 1 
<_1.3 0.5 

persistent 0.5 
.Slab thickness or failure layer depth (cm) .... 18 ... 94 . . . .  0.5 

value of 4 for the threshold sum, but then the tree 
suggested to classify the cases with threshold 
sum ~ 4 as unstable only if the failure layer depth 
was either >24 cm or <94cm. Cases with 
threshold sum _> 4 that did not fall in this range of 
failure layer depth were classified as stable. This 
slightly improved the accuracy scores. 

As not all variables had the same 
classification power, weighting the classifiers 
seemed appropriate. We did not try to optimize the 
weights, but have chosen them such that the 
method remains simple and easily applicable for 
practitioners. A discriminant analysis provided a 
priori values in the form of the coefficients of the 
canonical discriminant function. From the 
coefficients, we derived the weights as given in 
Table 3. 

The weighted threshold sum including all 
7 classifiers improved the true skill score by about 
4%. The split value given by the classification tree 
to discriminate between stable and unstable 
profiles was 3.5, i.e. a threshold sum of 0 to 3 
indicated mostly stable conditions, 3.5 to 6.5 
mostly unstable conditions with a transitional 
range of 3.5 to 4. In this range about 50% of the 
profiles were each rated as stable and 50% as 
unstable. Finally, the two models that showed the 
best performance in terms of true skill score were 
combined: weighted threshold sum with 6 
variables and the failure layer depth as a second 
independent variable in the stability assessment 
with the classification tree. The split value 
suggested by the tree method was 3 (< 3 stable, 
> 3 unstable). The band of transitional stability 

Table 4: Classification accuracy of different models for profiles with known failure layer. Scores are 
given for learning data set and below in brackets for test data set. 

Model . . . . . . . . . . . . . . . . . . . . . . . .  C;ritical range ~ A-ccu racy 

(%) 

Probability ..... FalSe a l a r m  True skiii'sc0re 
of detection rate POD-FAR 

POD FAR 
(%) (%) (%) 

Unweighted threshold sum ~ 5 
(7 variables) 

Unweighted threshold sum z 4 
(6 variables, without FL 
depth) 
Unweighted threshold sum > 4 
(5 variables, without RB 
score and FL depth) 
Unweighted threshold sum 
(6 variables) plus FL depth 

Weighted threshold sum 
(7 variables) 
Weighted threshold sum 
(6 variables) plus FL depth 

~4 
AND 

24...93 cm 
>3.5 

>_4.5 
OR 

3... 4AND 
34...78 cm 

72 61.2 19.1 42.1 
(64.2) (58.6) (32.4) (26.2) 

71.6 61.9 20.4 41.5 
(64.2) (58.6) (32.4) (26.2) 

67.5 52.3 16 ' 36.3 
(66.1) (48.8) (23.5) (25.3) 

74.7 59.0 12.3 46.6 
(66.1) (58.5) (29.4) (29.1) 

73.7 71.6 25.3 46.3 
(63.3) (73.2) (42.6) (30.5) 
77.0 64.9 13 52 

(65.1) (63.4) (33.8) (29.6) 
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Figure 1: Unweighted threshold sum with 7 
variables for stable and unstable sample of 
snow profiles. The band of transitional stability 
indicates the threshold sum values for which 
about 50% of the cases are either classified as 
stable or unstable. Stable data is given on the 
left and unstable on the right. Boxes span the 
interquartile range from 1st to 3 rd quartile with a 
horizontal line showing the median. Notches at 
the median indicate the confidence interval (p < 
0.05). Whiskers show the range of observed 
values that fall within 1.5 times the interquartile 
range above and below the interquartile range. 

ranged from 3 to 3.5. The classification tree 
showed that independent of failure layer depth, 
threshold sums of 0 to 2.5 indicated mostly stable 
conditions, and of 4.5 to 6 mostly unstable 
conditions. In the intermediate range of 3 to 4 the 
failure layer depth was decisive. If the failure layer 
depth was > 34 cm and < 79 cm the profiles were 
rated as unstable, otherwise as stable. This model 
had the best performance of all models. 
Compared to the initial model with 7 unweighted 
variables the accuracy increased by 5% and the 
true skill score by 10%. However, the increase in 
the true skill score was unfortunately due a 
decreased false alarm rate rather than an increase 
of the POD, i.e. a decrease of the false-stable 
predictions. With 35% the proportion of false- 
stable predictions was relatively high. 

The performance of the test data set with 
109 cases primarily from the winters 2002-03 and 
2003-04 was on average for the 6 models given in 
Table 5 only slightly poorer than for the learning 
set in regard to accuracy and probability of 
detection. However, the false alarm rate was 
substantially higher and accordingly the true skill 
score decreased by about one third from 41 to 
28%. 

McCammon and Schweizer (2002) 
pointed out that the threshold sum approach might 
have potential to avoid false-stable conditions. We 
considered all unstable profiles with rutschblock 
score > 4 as potential cases of false-stable 
prediction (N= 60). Applying the weighted 
threshold sum (6 variables without the RB score) 
revealed that 21 out of 60 cases (35%) with 
threshold sum ~ 3.5 were rated as unstable. 
Another 20 cases had a threshold sum value of 3 
which is considered as transitional. In total, when 
applying the weighted threshold sum with 6 
variables and a threshold value of 3 (>3: 
unstable), 67% of the potential false-stable 
predictions were recognized as potentially 
unstable - i n  contrast to the RB score. 

4.2 .Fail.ure l.aver, dete~, t~on 
When searching for potentially critical 

failure layers, the stable and unstable datasets 
were combined and critical failure layers (identified 
by stability tests or by an avalanche) were 
contrasted with non-critical failure layers which 
included all other layers in the profiles. This left 
the dataset unbalanced with only about 11% 
critical layers compared to 89% non-critical layers. 
A potentially critical layer was considered correctly 
classified as critical if the threshold sum was 
maximal at either the upper or lower interface of 
the failure layer. If several layers had the 
maximum score they were all considered as 
potentially critical. 

Initially, we tried to apply the same critical 
ranges as given in Table 3 that were used for the 
stability assessment. However, as the differences 

Table 5: Critical ranges for failure layer 
selection 

: -  : . .  . . .  - - - - . 1  ell i i . . . . .  : : - i  i t  i . . - - : - ! , n :  - : : - :  : :  - - 

Variable Critical range 

Switzerland Canada 

Failure layer > 1.125 mm >_ 1.2 mm 
grain size 

Failure layer < 1.5 (F to 4F) < 2.7 (1F-) 
hardness - 
Difference in 

> 1.125 mm _> 0.7 mm 
grain size 
Difference in z 1.5 ~ 1.3 
hardness 
Failure layer 
grain type persistent persistent 

Failure layer 13 ... 89 cm 19 ... 86 cm 
depth 
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between critical (failure) layers and non-critical 
layers were small, in particular for the Swiss 
profiles, the POD was low. Re-analysis showed 
that for layer selection separate threshold values 
were needed (Table 5). With these critical ranges 
and an unweighted threshold sum (6 variables) 
42% of the critical failure layers in the stable Swiss 
profiles and 64% in the unstable Swiss profiles 
were recognized. The layer selection routine 
typically proposed about 1.4 times more layers as 
potentially critical layers than were observed. 
Weighting the variables as in the case of stability 
classification did not improve detection results, but 
reduced the number of ties. The performance of 
the test data was better: 53% of the critical layers 
in the stable profiles, and 71% in the unstable 
profiles were correctly recognized. The detection 
rate for the Canadian profiles was higher: 72% for 
the stable profiles and 74% for the unstable 
profiles. 

Finally, stability for the potentially critical 
failure layers that were found with the layer 
selection procedure was assessed. For each of 
the potential failure layers the unweighted and 
weigthed threshold sum (6 variables without the 
RB score) were calculated. The critical ranges 
were _> 5 for the unweighted threshold sum and 
> 3.5 for the weighted sum. If in one profile the 
classification for different layers was different, the 
unfavourable case was considered, i.e. the profile 
was classified as unstable. As in the case of the 
stability classification with known critical weakness 
(see above) the weighted threshold sum 
performed slightly better. However, for the Swiss 
profiles the accuracy was low, i.e. just about 53%, 
whereas it was higher for Canadian profiles: 62%. 
The scores for the control dataset were 
comparable and for the Swiss profiles nearly ~ 
always higher than for the learning data set. 

5. CONCLUSIONS 

Introducing a simple threshold sum 
approach to discriminate between stable and 
unstable profiles proved to be successful for the 
case when the principal weakness was known. A 
weighted threshold sum with the failure layer 
depth as independent variable scored highest 
(77% for the learning data set, 65% for the test 
data set). Detection of potential critical layers 
proved to be less successful, in particular for the 
Swiss profiles. If the principal weakness was 
unknown, the stability classification for the 
potentially critical layers agreed with the observed 
stability for the Swiss profiles in about 53% and for 
the Canadian profiles in about 62% of the cases. 

The results emphasize that stability 
assessment should i nc lude -  besides stability 
tests that help to locate the principal weakness- 
analysis of snow layer properties, in particular 
grain size, type and hardness. Even when doing a 
hasty stability test observations of failure and 
adjacent layer properties can improve the 
assessment. The proposed threshold sum 
considering seven variables is well suited for 
profile analysis of manual profiles by practitioners. 
Stability classification of snow profiles simulated 
by e.g. the snow cover model SNOWPACK will 
need further adaptation, in particular for 
application in transitional snow climates. 
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