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Modeling the Interface Between Two Layers of Snow
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Abstract: Although dry slab avalanches in maritime climates can occur due to failure
within a layer, avalanches in more continental climates are often caused by a weak bond
between layers, usually as a result of the presence of surface and/or depth hoar. This can
make modeling such a situation complex, as the quantitative material properties of the
strength between two layers are difficult to measure and poorly understood. In addition,
it is well known that the strength of snow shows a large degree of spatial variability.
Measurements indicate local areas of the snowpack can have a strength which is less than
the overburden stress, while the slope remains intact. The stress due the weight of snow
above these areas is redistributed to areas of greater strength, a phenomenon which has
been termed "bridging". Interface elements for use in finite element analysis have been
developed in structural mechanics, which simulate the interface between two different
materials (i.e. layers) and allow modeling of discontinuities within in a continuous system,
as well as allowing the traditional elements within the model to slip relative to one another.
Preliminary finite element modeling with these interface elements in the context of snow
slope stability indicate that they may provide a useful tool for modeling the transfer of
stress from weak to strong areas within the snowpack, as well as fracture propagation of
dry slab avalanches.
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1. Introduction

Snow is an extremely variable substance, and like
its other physical properties, the strength of snow
has been a very difficult parameter to accurately
model, due to its wide variation in seemingly similar
situations. Snow strength depends strongly on mi
crostructure [Hansen and Brown, 1987], however mi
crostructural properties are rarely measured. Cur
rent snow strength models based on density show a
wide range of scatter [Jamieson, 1995], [McClung,
1974], but remain useful for the prediction of direct
action avalanches [Conway and Wilbour, 1999].

The majority of this large scatter in strength mea
surements is believed to be due to true variability
in the material properties and not due to measure
ment error. Numerous studies have shown standard
deviations of rv 25 - 50% are conmlon [Fohn, 1987],
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[Sommerfeld and King, 1979] within a seemingly h<r
mogeneous layer of snow.

Measurements along the crownwall of recent
avalanche sites indicate that snow slopes consist of
weak areas (deficit zones) where the shear strength
is less than the overburden stress, and strong ar
eas (pinning zones) where the shear strength is of
ten much greater than the overburden [Conway and
Abrahamson, 1988]. This situation is also often ob
served in continental climates, when the depth hoar
layer is very weak, and the snowpack is supported by
trees and stronger areas along the side of avalanche
prone slopes. This phenomenon has been termed
"bridging", and has gained much interest although
it seems to be poorly understood.

Previous approaches to modeling this problem of
wide strength variation have used statistical meth
ods [Sommerfeld, 1980], [Gubler, 1978], [Sommer
feld, 1971], by calculating a probability of failure.
The two common statistical theories that have been
proposed are the series-element theory [Weibull,
1939] and the parallel-element theory [Daniels, 1945].
For predicting shear failure of snow, it appears that
Daniel's parallel-element theory provides the most
accurate description, while tensile tests appear to
exhibit a mixture of series- and parallel- element be
havior [Sommerfeld, 1980]. Using a Daniels- [1945]
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3. Interface Elements

are satisfied between elements, and these conditions
along with the stress-strain law are satisfied within
each element. The solution from the finite element
method approaches the analytic solution as the num
ber of elements is increased, for those problems for
which such a solution is available. The solution of a
set of governing equations can be found at many
points throughout the domain, as the problem is
formulated as a large system of algebraic equations
which a computer can easily solve. The system of
algebraic equations is typically written as:

where F and u are colUlllll vectors which contain the
nodal forces and displacements, respectively, and K
is the stiffness matrix which depends on the mate
rial properties of the elements, as well as their size
and shape. In two dimensions, the size of F and u
is [2n xl] where n is the number of nodes and the
size of K is [2n x 2n]. Either the force or the dis
placement is specified at every node on the bound
ary, and Eqn. 1 is solved for the unknown displace
ments. These unknown displacements can then be
used to calculate the nodal forces, and the stresses
and strains within each element.

As interface elements are not part of typical com
mercial finite element packages (such as ABAQUS,
PLAXIS, etc), this model was created by modifying
code written in Mathematica by Rhee [2002]. At this
stage the results can be computed in a reasonable
amount of time on an IBM ThinkPad 770z, how
ever further detailed analysis with large numbers of
elements will be run on the supercomputer at the
Institute of Arctic and Alpine Research.

type correction to a large number of shear frame
t sts appears to provide a useful measure of the
~rength of a weak layer [Sommerfeld and King,
~979], however this type of test is so time in~ensive
(at least 50 shear frame tests required) that It does
not seem to have been adopted as common practice
for snow slope stability evaluation.

This variability, however, is becoming an increas
ino-ly important problem as the number of backcoun
tr; travelers continues to rise. 'With snow strength
showing such large variations, digging one or two
snowpits to evaluate the stability of a slope may
not be sufficient. Due to the nature of the "bridg
ing" phenomenon, it seems that a model in tw<r and
preferably three-dimensions which incorpor~tes the
observed distribution of strength and descnbes the
transfer of load, may lead to a better understanding
of the physical processes involved.

This paper presents an alternative approach to
this problem, by forming the basis for finite element
modeling of the bond between two layers of snow,
and providing a means for mathematically repre
senting the transfer of load from weak or deficit
zones to strong or pinning zones. In order to model
discontinuities in a continuous system, and allow el
ements to move relative to one another, an element
which represents the interface between two layers is
required. Interface elements have been developed
in the structural engineering community [Desai and
Rigby, 1995], [Beer, 1985] for solid/fracture mechan
ics problems, to simulate the transfer of load due to
microcracking, and for prediction of the origin and
shape of fractures in various materials, most· notably
concrete [Willam and Rhee, 2001]. Here we present
preliminary tests to investigate the applicability of
these elements to snow slope stability problems.

F=Ku (1)

2. Finite Element Modeling

With the rapid increase in computing power in
the last 20 years, the finite element method has be
come a widely used approach for a large variety of
problems. The advantage of this technique is that
it can be applied to any geometry, and effects of
non-homogeneity as well as non-linear and tinle
dependent properties can be incorporated for situ
ations where analytic solutions would be extremely
complex or impossible to find. A short description
of the technique will be given here, as it has been
thoroughly described elsewhere [Cook et al., 1989].

The body to be studied, which can take any de
sired shape, is first divided into many small ele
ments. The elements used in this study are con
stant strain triangles (CST) and interface elements,
for which the stresses and strains are assumed con
stant. The equilibrium conditions and compatibility

Interface elements provide a method for modeling
the accumulation of microstresses in the neighbor
hood of defects, and the breaking of bonds. They
allow modeling of microcracks which coalesce to ini
tiate the formation of mesoscale cracks. Thus, these
elements provide a powerful tool for the study of
fracture mechanics. The solid/fracture mechanics
community has initiated interest in the study of the
behavior of structures containing interfaces between
two dissimilar materials, as these interfaces have a
substantial influence on the response of the struc
ture to loading. Modeling discontinuities within a
continuous system requires an element with realistic
constitutive properties and the ability to simulate
the material interface [Plesha and Ballarini, 1989].

The interface element used in this paper is based
on the element proposed by [Hohberg, 1995] and

. [Beer, 1985], used for modeling fracture in concrete.
Analogous to the relationship between stress a and

315



International Snow Science Workshop (2002: Penticton, B.C.)

strain c (0- = Ec), the traction T of the cohesive
surface defined by the interface element is related to
the separation v of the cohesive surface as

where T = [Tt, Tn]T and v = [Vt, vn]T are com
prised ofthe normal and tangential components, and
De = De(v) is a non-linear function of v. Because
this type of constitutive equation is non-linear (i.e.
T(V) is non-linear), and the finite element formula
tion is based on solving a set of linear algebraic equa
tions, we must solve for the unknown displacements
in a series of steps. In each successive step, the cur
rent tangent stiffness or rate constitutive equation
for the cohesive surface is used to approximate De,
as is typically done for non-linear constitutive rela
tions. The next section outlines the calculation of
the tangent stiffness matrix D t .

3.1 Tangent Stiffness Matrix D t

Traditionally, the isotropic damage relation is:

(9)

(8)

(10)

D t = (1 - w)D - D 2

and D 2 =

Since w«() is a function of (, we find was

. Dw D(. D( . Dw Vn . Vt .
w = D( [DvnVn + DVt Vt] = D( [(vn + ('Vt] (7)

In order to calculate wand ~(' we find the one
dimensional traction of the cohesive surface 0'(() us
ing Eqn. 3 and Eqn. 5, and solve this for w

where the last step comes directly from differenti
ating Eqn. 5. Substituting Eqn. 7 into Eqn. 6 and
rearranging terms we arrive at the rate constitutive
equation

.where

(2)T=Dev

Our constitutive relationship is non-linear, as
stated above, therefore we must approximate De
in a series of steps using the tangent stiffness ma
trLx D t

. To obtain the rate constitutive equation
for calculating the tangent stiffness matrL'C, we must
differentiate Eqn. 3

where T = [Tt, Tn]T and v = [Vt, vn]T represent the
normal and tangential components of the traction
and separation of the cohesive surface, respectively,
as above. As long as damage has not been initiated,
we assume that the normal and tangential stiffnesses
are equal and that there is no coupling between the
normal and tangential separation. Therefore, ini
tially, we let

(15)

(ll)

(12)

O'(() = (1 - w«())do(

w«() = 1 - O'«()
doC

Dw _ 1 (O'( () DO'(()) (13)
D( - doe -(- - 8( .

therefore

where Or determines the rate of softening. Therefore,
for ( > omax we have

The last step we must take is to define the one
dimensional traction of the cohesive surface 0'(().
Initially we assume that the interface exhibits lin
ear elastic behavior, and let O'«() = do(, where
do = 0'max /omax, 0'max is the shear strength of the
cohesive surface, and omax is the one-dimensional
separation ( at which damage is initiated. For
( < omax, we find ~( = O'max/omax' Commonly
a softening response is assumed after damage is ini
tiated, which is either linear or exponential. Here
we assume a softening response which is exponen
tial, and for ( > omax we define

Using the above equations, the tangent stiffness
matrix D t can be calculated during each successive
iteration, which allows the finite element solution to
tIllS non-linear problem.

(3)

(5)

(4)

(6)

T = (l-w)Dv

D=dI=[dO 0]
- 0_ 0 do

+=(I-w)Dv-wDv.

where do is the elastic cohesive surface stiffness
and I is the identity matrix. In the ideal situation
one would use a micromechanically based evolution
for the damage variable w, based on current work on
the micromechanics of snow [Johnson and Schnee
beli, 1999], but here we begin by following Rhee
[2002] and simply assume that w is a function of
the one-dimensional cohesive separation (, which is
defined as
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Figure 1. Basic building block for finite element analy
sis, containing 6 constant strain triangles and one interface
element. Note that nodes 2,3 and 7,8 have the same coordi
nates, as the interface element (7) has zero thickness. The
x-axis is parallel to the slope and positive in the downslope
direction; the y-axis is perpendicular to the slope and positive
upwards.

4. Basic Building Block

In this paper we restrict the interface elements
to exist only on a plane parallel to the slope, as
initially we are just investigating the applicability
of the model to shear failure. We begin with the
basic building block for our finite element analysis,
which consists of 6 constant strain triangles and one
interface element, shown in Fig. 1.

Our coordinate system is defined with the x-axis
parallel to the slope and positive in the downslope
direction; the y-axis is perpendicular to the slope
and positive upwards. Element labels are shown
within circles, and nodes are numbered. Element
7 is the interface element, which has zero thickness,
and therefore initially nodes 2,3 and 7,8 have the
same coordinates.

Following previous finite element modeling of snow
slopes [Wilson et al., 1999], [Curtis and Smith,
1974], [Smith, 1972], [Smith et al., 1971] we assume
that each layer is linearly elastic and plane strain
conditions accurately describe a snow slope. Snow
surely represents non-linear behavior, however de
formation within the snowpack due to the weight of a
skier causes a strain-rate E > 10-4 , therefore the lin
ear assumption should be appropriate for many situ
ations [Wilson et al., 1999]. As in previous modeling
work, we begin with the two-dimensional assump-

Mountain Snowpack

tion of plane strain as gradients across the slope
are most likely smaller [Fohn, 1987]' however future
work will extend this model to three-dimensions to
more completely describe the "bridging" effect.

In this first simple initial study the elastic mod
ulus E and Poisson's ratio v are assumed to be
constant, however this assumption will be relaxed
later as well. This model was initially developed
as a displacement-based formulation, such that pre
scribed displacements are applied incrementally (due
to the non-linear nature of the interface elements),
and the required forces to sustain those displace
ments as well as the resulting stresses and strains
are calculated after the solution of the unknown de
grees of freedom is found. To test this basic building
block, we apply a vertical deformation incrementally
at node 1, to attempt to initiate shear failure of the
block. The nodes along the bottom of the block
are assumed fixed, as initially we assume that the
snowpack is fixed to the ground (i.e. no full-depth /
climax avalanches will occur).

4.1 Results

This first test produced satisfactory results, as
shear failure was initiated and the upper three con
stant strain triangles sliped together relative to the
lower three CST. The deformed configuration is
shown in Fig. 2.

4

Figure 2. Deformed configuration of basic building block,
after incremental vertical displacement was applied at node
1. Upper three CST slip relative to lower three CST, as the
interface element allows modeling of shear failure.

Note that the upper three CST do deform slightly,
however the majority of displacement is due to the
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Figure 3. Tangential displacement U x vs. resulting tan
gential force fx at node 1. The three regions of behavior are
labeled A,B,C. The force rises to a peak, then after damage
is initiated within the interface element, there is an exponen
tial decay to near zero force.

failure of the interface element. Changing the mate
rial properties of the interface element and the con
stant strain triangles can be easily done to represent
a stronger or weaker bond of the two layers relative
to the stiffness of the layers themselves, resulting in
a ,,;ide range of possible behavior.

Fig. 3 shows the tangential displacement U x at
node 1 vs. the resulting tangential force ix at node
1. Note that there are three regions of behavior,
labeled A,B,C in the figure.

Figure 4. Initial configuration of the combination of three
building blocks. The coordinate system is the same as that in
Fig. 1, and incremental vertical displacement was applied at
node 1 as before.

Next we extend this concept to multiple interface
elements, to examine the behavior as each element
fails in succession and load is transferred. We begin
by combining three of the basic building blocks out
lined in the previous section. This amounts to 18
constant strain triangles, and 3 interface elements.
As before, the interface elements initially have zero
thickness, therefore there are several nodes with the
same coordinates. The initial configuration is shown
in Fig. 4.

5. 18 Constant Strain Triangles and 3
Interface Elenaents

Once again, we apply an incremental vertical dis
placement at node 1, and evaluate the resulting
forces, stresses, and strains at each node and el
ement during each step. As before, shear failure
was initiated, as the upper constant strain triangles
eventually slipped relative to the lower CST, due to
the failure of the interface elements. However, since
there are now three separate interface elements, the
process of failure is more complicated.

5.1 Tangential Force vs Displacement

First we examine the required tangential force at
node 1 vs. to the incremental tangential displace
ment. This is shown in Fig. 5. Vve now have five dif
ferent regions of behavior, as the interface elements
do not deform and fail at the same time. These five
regions are labeled A,B,C,D,E.

c
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Region A represents the elastic deformation of
the upper three constant strain triangles. Region B
represents deformation of both the constant strain
triangles as well as initial deformation of the inter
face element. Before damage is initiated, the in
terface element exhibits linear elastic behavior as,
described in the preceding section. Region C be
gins when damage occurs in the interface element
and the exponential decay is caused by the softenin~
response.

This initial simple example demonstrates the ba
sic characteristics of the interface element. For a in
cremental applied displacement, the required force
rises linearly with increased displacement as the up
per elements deform. The slope of this line changes
as the interface element begins to deform as well,
and there is an exponential decay to zero of the re
quired force as damage is initiated and the upper
three constant strain triangles slip relative to the
lower three. This basic building block ,,;ill be used to
describe progressive shear failure between two layers
of snow.
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Figure 5. Tangential displacement U x vs. resulting tan
gential force f x at node 1. The five regions of behavior are
labeled A,B,C,D,E. The force rises to a peak, but the slope
changes as each interface element successively begins to de
form. After damage is initiated within all three interface
elements, there is an exponential decay to near zero force.

Figure 6. Tangential displacement U x vs. tangential shear
stress Txy at node 1. The five regions of behavior are labeled
A,B,C,D,E. The shear stress is negative, as expected for
the given coordinate system. As each interface element pro
gressively deforms, the load is transferred to the downslope
element until all three have failed, at which point all nodes
show an exponential decay to near zero.

Region A shows the initial deformation of the
upper constant strain triangles, as before. Region
B indicates initial deformation of the first interface
element (element 19), along with continued defor
mation of the upper CST. Regions C and D show
deformation with contributions from the second and
third interface elements (elements 20, 21), respec
tively. The slope continues to decrease, as more and
more elements are involved in the deformation. Re
gion E begins when damage has initiated in all three
interface elements, as the tangential force then de
cays exponentially to near zero.

Note that the exponential decay of the tangential
force does not begin until all three interface elements
have failed. As each successive interface element de
forms, the stress which it was bearing is transferred
to the downslope elements, representing the "bridg
ing" phenomenon discussed earlier.

5.2 Shear Stress vs Displacement

In this section we investigate the shear stress at
three different points along the slope as a function
of the applied displacement. Fig. 6 shows the slope
parallel shear stress T xy for nodes 18, 16, and 14 as
a function of the incremental displacement at node
1. Regions A,B,C,D,E identical to those in Fig. 5
are shown for reference. These nodes were chosen
as each is located in the center of one of the three
interface elements.

In region A, none of the interface elements have
begun to deform, and all three nodes show a lin
early increasing shear stress. The shear stresses are
all negative, as expected for our coordinate system

and the direction of deformation. In region B, the
first interface element begins to deform (element 19),
which causes a decrease in the slope of shear stress
at node 18. Tllis is because each increment of dis
placement causes less stress at node 18 due to the
deformation of the interface element. Note that the
slope of the shear stress curve at nodes 16 and 14
increase slightly as some of the load is transferred to
the two downslope building blocks.

In region C the second interface element (element
20) begins to deform, causing a decrease in the slope
of the shear stress curve at nodes 18 and 16, and an
increase in slope at node 14. This is expected, as
more deformation now occurs in the third building
block due to the transfer of load from the upper two
building blocks.

Region D shows the slope of the shear stress curve
decreasing again at nodes 18 and 16, however there is
little change in slope at node 14. One would expect
the slope at node 14 to decrease as well, however
there are no downslope blocks left to transfer the
load to. This effect is due to the small number of
elements in this simple example. Finally, in region E
all three interface elements have failed, and all three
nodes show an exponential decline to near zero.

This simple example problem shows successive
transfer of load as each interface begins to deform
in turn. The upper layer does not fail, however,
until all three interfaces have each failed. This in
dicates that these interface elements may provide a
tool for describing the transfer of load from deficit
zones to pining zones. The next section will make
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the changes in each region more apparent by looking
at the derivative 8Txy /8ux .

5.3 Change in Shear Stress vs Displacement

As the changes in slope of the shear stress curves
are not completely obvious in Fig. 6, next we plot
the slope of these curves 8TXy /8ux vs. the applied
tangential displacement ux . These are shown again
for nodes 18, 16, and 14 in Fig. 7, with the five
regions of behavior once again labeled.

shear stress curve at all three nodes rises rapidly to
a positive value (so that the negative shear stresses
decrease), then exponentially decays to near zero,
as the upper layer slides relative to the lower layer.
Fig. 7 clearly shows the transfer of load as each inter
face element becomes involved in the deformation,
and indicates that all three interface elements must
fail before failure is initiated in the upper layer.

6. Future Work

Figure 7. Tangential displacement Ux us. change in tan
gential shear stress fhxy /8u x at node 1. The fiue regions
of behavior are labeled A,B,C,D,E. The change in shear
stress shows the transfer of load between building blocks until
all three interface elements haue failed, at which point the
slope rapidly becomes positive and then decays exponentially
to zero.

These simple initial tests have allowed a thorough
understanding of the behavior of interface elements
in shear failure, and indicate that they may pro
vide a useful tool for modeling snow slope failure.
More complicated tests will now be performed, with
a realistic slope geometry and many elements. The
supercomputer at the Institute of Arctic and Alpine
Research (INSTAAR) will provide enough comput
ing power for the solution of much more complicated
problems.

Another planned improvement for the model will
be to include nodal forces as boundary conditions.
Currently the finite element model is of the
displacement-based type, where displacements are
(incrementally, for non-linear problems) prescribed,
and forces are calculated after the solution ofthe un
known displacements is found. The method of solu
tion will be made more robust so that forces as well
as displacements can be applied to any of the nodes
as initial conditions. This will allow one to include
the force of gravity everywhere throughout the snow~

pack, as well as apply the force of a skier, climber,
or snowmobile, making the model more physically
realistic.

Further planned improvements include modeling
of layers with different properties, and the inclu
sion of statistical distributions of interface layer
strengths. Eventually, vertical interface elements
will be included as well, to attempt to predict the
location and shape of fracture profiles. Finally, ex
tending this model to three-dimensions will allow a
more complete mathematical description of stress re
distribution ("bridging") within a winter snowpack.

7. Conclusions

This prelinlinary work with interface elements in
a finite element model has shown that these types of
elements may provide a tool for modeling the bond
between two layers of snow on an avalanche-prone
slope. These simple tests provide an initial under
standing of the behavior of interface elements, and
lay the groundwork for future modeling efforts of
this type. Shear failure can be modeled with this
method, which allows more traditional elements to
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slip relative to one another. By varying the strength
of individual interface elements, this method may be
able to more accurately describe the strength prop
erties of a snow slope. In addition, they provide
a means to accurately model the transfer of stress
or load from weak areas (deficit zones) to strong
areas (pinning zones). This may lead to greater
insight about physical processes of tIlls "bridging"
phenomenon.

If a method for accurately estimating the shear
strength of a snow slope over a large area is found
(possibly ground penetrating radar), this type of
modeling would allow one to incorporate this infor
mation into a slope-specific model. Previous work
has clearly shown that all snow properties, in partic
ular snow strength, vary widely across a snow slope.
Hopefully this type of model will provide a means
for mathematically describing this variation and its
affect on the distribution of stress. Further work
with interface elements could lead to the prediction
of the location and shape of fracture profiles.
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