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Abstract: Decision tree models of maximum avalanche size class run daily at Mammoth Mountain, California.
A classification tree grown on an eight-year subset of all weather and avalanche records shows an absolute accuracy
on avalanche control days of from about 60-70% in a given year; accepting overestimates increases this to 70-80%.
Errors arise from the rarity of large events, exclusion of the smallest most frequent events, and tree sensitivity to
small changes in key predictor variables. A complete 19-year data set yields a pair of decision trees forecasting both
maximum size class and maximum crown size over the entire mountain. Tested against a twentieth year, the size
class tree may be more accurate for extreme events but performed slightly worse overall than the original tree.
Coupling the size class and crown trees identified both class 5 avalanches during the test year. A third set of trees,
driven by hourly data from a remote instrument network, distributes maximum class and crown sizes over
geographic sub-regions of the mountain. These are striking for both small size and low misclassification rate. Ifa
major source oferror is chaotic avalanche behavior, decision trees may prove most valuable for providing
probability estimates from given sets of initial conditions.

1. Introduction

Decision tree models of avalanche activity can be
valuable forecasting and training tools. They rank
important relationships among avalanche variables and
provide clear graphic display of the relative importance of
variables on a given day. They provide probabilities of
different results and can alert workers to unusual
conditions.

Binary decision trees may be either classification
or regression trees (Breiman et al., 1984). Data are
arrayed in a learning sample of the response variable
(e.g., size class) and predictor variables (new snow
depth, 24-hour wind speed, etc.). They are split on the
single predictor value that produces the two most
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homogenous response variable subsets. For example,
more than 0.5m of new snow in 24 hours may produce
mostly class 3-5 avalanches while those with less new
snow may produce mostly class 1, 2 or no avalanches.
Each of the two subsets is then reevaluated and
recursively split until the final subsets shrink below a
specified size or meet a criterion of homogeneity.

Davis et al. (1999) used decision trees to evaluate
and rank storm, snow and weather factors influencing
dry slab avalanches at Alta and Mammoth Mountain.
That paper details decision tree methods, variables
studied and rankings of the variables as predictors of
maximum size class, sum ofavalanche sizes, and
whether a given day is an avalanche day. We use their
variables in all three parts of this study.

Elder and Davis (2000) extended the previous
work by developing classification trees for avalanche
education and training at Alta and Mammoth Mountain.
Those trees, too large to reproduce, graphically
demonstrate logical and hierarchical relationships
among the many variables affecting avalanche release.
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We focus here on decision trees for avalanche

forecasting, reporting on three studies at Mammoth
Mountain. The first tests the tree from Elder and Davis
(2000) against avalanche data from the last three
seasons. The second develops classification trees for
maximum size class and crown size from all data
collected from the winters of 1983 through 2001,
testing them on data from winter 2002. Finally, hourly
data from a network of snow and weather sensors are
used to forecast region-specific avalanche activity
around the mountain. We describe methods and results
in each section.

The combined studies address five questions:

Avalanche Forecasting

Table 1. Maximum class size tree tK:curtK:yfor the last
3 seasons at Mammoth MounJain. N is the number of
avalanche control days; hits are days the tree correctly
forecast the maximum class size.

Season N Hits i Hits + Overestimates
1999/0046127(59%)' 32 (70%)

2000/0I?? J+§(?!~5J45(*§~~)
2001/02 31 15 (48%) : 25 (81%)

9

1. Beyond education, are such models useful
forecasting tools? Can they alert avalanche workers to
unusual conditions that put them at risk?

2. Does increasing learning sample size improve
the decision tree forecasts, particularly for larger, more
dangerous events?

3. Size class is a subjective judgment. Can trees
provide accurate quantitative estimates of physical
features like maximum crown size?
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4. Can spatially distributed hourly measurements
drive region-specific forecasts of class and crown size?

5. Are there fundamental limits to accuracy that
can be anticipated for these and other statistical
models? How are such models best used?

2. A three-year retrospective study
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Avalanche control day 1999/2000

Figure 1. Predicted and actual maximum avalanche
size class, 1999/2000. (e= predicted size class; 0=

actual size class).

We tested the Mammoth classification tree from
Davis and Elder (2000) against all data from the winters
2000 through 2002. That tree, estimating maximum
size class for a given day, was grown on an eight-year
subset of all data acquired between 1989 and 1998.

The learning sample contained 890 cases, of
which 160 were avalanche control days. Most of those
had a maximum avalanche size of class 2 or 3, with
only a handful of class 1 days, 24 class 4 days and
seven class 5 days. Most class 1 days were excluded
because of inconsistencies and uncertainty about record
~eliabi1ity. The largest size class estimated by the tree
IS class 4.
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A valanche control day 2000/2001
46 61

. The tree ran daily on avalanche control mornings
dunng the winters of2001 and 2002. It has classified
132 ava~anche control days over the last three years, as
summarIZed in Table 1 and detailed in Figures 1-3.

Figure 2. Predicted and actual maximum avalanche
size class, 2000/2001. (e= predicted size class; 0=

actual size class).
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Data errors, identified graphically, were corrected

from original records. Unlike Davis et aI., we inclUded
all class 1 events after correcting or excluding obvious
mistakes. We did not shift avalanche data back into
storm cycles to account for slides released by control
work on clear days following storms (about 30% of
avalanche control days would qualify). We used their
variables plus several others indicative of clearing after
a storm (e.g., morning precipitation, morning cloud
cover, previous control work done on the upper
mountain). This approach followed from the exigencies
of simple use during daily operations.
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Avalanche control day 2001/2002

Fig. 3. Predicted and actual maximum avalanche size
class, 2001/2002. (e= predicted size class; 0= actual
size class).

The maximwn class size tree has 65 terminal
nodes and a misclassification error rate of0.35. The
tree for maximum crown size has 76 terminal nodes and
a misclassification error rate of 0.43. Predicted and
actual maximum class and crown sizes for winter
200112002 are summarized in Table 3.

3. Class and crown size trees grown from a
19-year learning sample

Table 2. Distribution ofmaximum avalanche size class
for 696 control days at Mammoth Mountain, 1982/1983
through 2000/2001.

Hits + Overestimates
21 (68%)
20 (65%)

o

6

Response Hits
size class .}}(~?ro)

crown size. 4 (13%)
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Avalanche control day, 200112002

Table 3. Maximum size class and crown size tree
accuracies for winter 2001/2002 at Mammoth
Mountain. N =31.

The maximwn class size tree (Figure 4) correctly
predicts one of the two class 5 avalanches. However, it
exhibits somewhat lower overall accuracy than the tree

Figure 4. Maximum size class during the 2001/2002
season, actual and predicted by the tree grown on a 19
year learning sample. (e = predicted size class; 0 =

actual size class).
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24

4
61

3
179

2
180

1
128

None
124

Size:
Occurrences:

Decision trees are insensitive to rare occurrences.
These are sometimes isolated in small terminal nodes
but often lwnped with other events occurring under
similar circumstances. The primary benefit anticipated
from a larger learning sample is better classification of
large avalanches.

We accept overestimates because the trees shoqld alert
workers to maximwn likely occurrences and the factors
accounting for them. Class boundaries are fuzzy and
overestimating anticipated avalanche size carries no
penalty.

Mammoth Mountain has recorded 742 avalanche
control days during more than 3300 days of operation
since 1982/83. We grew trees predicting maximum
size class and maximwn crown size from 696 control
days during the first 19 years of the data set. 200112002
was withheld as a test year. Table 2 gives the size
distribution for the largest avalanches on each control
day in the sample.



9 ......1----- Node probability of
4.6m crown =0.17

~in Section 2. Davis et al. excluded most class 1
tes lanche days while we excluded all non-control days,
~v: neither tree did well with class 1 or 0 (i.e., none)
l~t year. Each correctly identified only 2 out of 8
cases. Further, Table 2 shows our learning sample to be

II balanced with respect to number of cases per
wealanche class. The effect of shifting avalanche
~ntrol days back into the storm cycles remains to be

investigated.
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Avalanche control day, 2001/2002

Figure 5. Maximum crown size during the 200112002
season, actual C01d as predicted by the decision tree
grown on a 19 year learning sample. (.= predicted
size class; 0= actual size class).

Figure 5 shows predicted and actual maximum
crown size for the 31 control days during 2001/2002.
The fit between predicted and actual crown sizes is
much better than suggested by few hits shown in Table
3. The relatively high misclassification rate is also
misleading. The tree tracks crown size well throughout
the season, with only two exceptions, which we
consider first.

Day 10 is a clear miss, 'with probabilities of 0.05
and 0.24 for crowns ofO.9m and 0.6m respectively.
D~y 7, also underestimated by the size class tree
(FIgure 4), produced a class 5 avalanche with a 3.7m
crown. However, day 7 falls into one ofthe two
terminal nodes with the largest mean crown sizes. The
tree predicts a 105m crown that day but estimates a 0.17
probability of a larger crown (4.6m, comparable to the
actual one).

Pl Figure 6 shows days 7 and 10 to be anomalies.
ottoo are the errors between estimated and actualm .
axtmum crown size. The plotted mean (0.06m) and

standard deviations (±0.29m) are for the set without
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those two days. Errors are then approximately
normally distributed. Applying the t-test to those data,
the 95% confidence interval for the mean is from -0.05
to 0.17m and the null hypothesis that the mean error
equals 0 cannot be rejected.
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Avalanche control day, 200112002

Figure 6. Crown size errors_ Mean (solid line) and
standard deviation (dotted lines) are shownfor the set
without days 7 and 10.

A strong case exists for joint use of crown size and size
class trees. Class 5 avalanches occurred on two days.
The size class tree predicted the first while the crown
size tree issued a significant probability of the second.
Had both trees been operational in late 2001 there
would have been warning of class 5 avalanches on both
days.

4. Regional trees driven by hourly remote
instrument data

The trees described so far predict occurrences
over the entire mountain, but different sets of starting
zones receive different storm loading and respond
differently to that loading. Since fall 1999, a network
ofremote instruments has logged hourly data from six
sites around the mountain. Four sites (two on the
summit ridge, two at mid-mountain) provide wind
speed and direction, maximum gust, temperature and
relative humidity near the major starting zones. A fifth
site measures the same variables at the base of the
mountain while the sixth logs snow depths, water
equivalence, temperature and relative humidity.

Localleaming samples for maximum size class
and crown size on summit ridge and mid-mountain
avalanche paths were prepared by averaging hourly
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Figure 7. Classification frees for maximum crown size (top) and size class (bottom) for 37paths offthe summit
ridge ofMammoth Mountain. Trees are driven by local instnlment data and snow plot data only. Splitting criteria
are givenfor all nodes. Lesser values go to the left descendent node, greater values to the right. Step size is
proportional to the reduction in node deviance at each split. Key: snow48 = 48hr snOlifall; mdepth = snow depth at
master stake; wind24 = average 24hr wind speed; vgi = Vapor Gradient Index (Davis and Elder [2000]); ppt72 ==
74hr water eqldvalence; acCll1nsnow =season total new snow accumulation to date; degdays = degree days;
lotemp/hitemp = 24hr low and high temperatures; ·winddir = wind direction (clockwise from n011h).



---1ather measurements into 24-, 48- and 72-hour
loea we l' h . h th. fi the last three years and coup mg t ese WIt e
bros or ., . Till d dl 1ondinO" precIpItatIOn totals. s pro uce oca
corresp '" th . th 1 .edi tor variables analogous to ose m e earmng
pr cles for the trees discussed earlier.
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Trees were grown for both maximum class and
size for the summit ridge and lower mountain

crown h·· il
1 che paths. Trees for bot regIOns were SlID ar'

ava an .' d' dhthough only the summIt set IS Iscusse ere.

Figure 7 displays the full trees for maximum .
wn size and size class for 37 paths on the sumnut

~~e. Most ~triki~g is their small size coupled wit~
1wmisclassl ficatIOn error rates. The crown and SlZe
c~ass trees have 13 and 17 terminal nodes respective~y,
with misclassification rates of0.24 and 0.28. Allowmg
as few as two cases per terminal node and splits
producing single-case nodes only.increas~s the number
ofcrown size terminal nodes by SiX and SIze class
terminal nodes by ten.

The hierarchical splits in Figure 7 illustrate both
predictive and explanatory asp~cts ofdecision trees..In
both trees the first split producmg the greatest reduchon
in tree deviance is on 48-hour snowfall. In both cases
the critical value is about 0.6m of new snow, with
higher values producing larger avalanches. Following
the right main branch of the crown size tree, the next
important factor is 24-hour average wind speed. Note
that in both trees all critical values for 24-hour wind
speed are about 20m/s. That sustained winds over
1700s should produce no crown is at first
counterintuitive, but such winds (depending on
direction) either strip the mountain or produce hard
slabs resistant to artillery, hand charges and ski cutting.
Below the 17m/s threshold crowns are about a meter
thick, but the larger ones tend to occur in thinner packs
with less than 2.6m ofsnow at the master stake.
Thinner snow packs are subject to larger temperature
gradients, greater depth hoar development, and
therefore larger releases.

Avalanche Forecasting

Scarcity of small events is a likely cause of size
class tree simplification. Similarly, crown sizes on the
upper mountain are often much larger than those on the
lower. The mean maximum crown size for paths off
the summit ridge is 2.5 times that for mid-mountain.
Average wind speeds, taken at the top and at mid­
mountain, show similar ratios of about 2.5 across
seasons, during storm periods and on control days. To
the extent that regions are more homogeneous in their
loading and avalanche characteristics than the mountain
as a whole, tree size should shrink and accuracy should
improve.

5. Discussion

Each split in a decision tree divides the data with a
plane perpendicular to the axis of the splitting variable.
A parallelepiped classifier emerges in which predictor
variables in a given sub-volume of the data space
produce (ideally) similar responses. To the extent that
small differences in the initial conditions produce large
differences in the response, the approach will fail.

Sensitive dependence on initial conditions is the
classic definition ofchaos. Chaotic behavior would
account for the failure of the complete, much larger
learning sample to produce decision trees of greater
overall accuracy. It would also account for both the
large tree size and relatively large error rates: adjacent
and even identical points in the data space produce
vastly different avalanche outcomes. For example, the
largest crown recorded at Mammoth Mountain is 6.6m.
It occurred on a day that produced only ten other
avalanches, all class 1 and 2, with crowns from 0.05­
O.3m. Inspecting the terminal nodes of the decision
trees shows this is common.

Rosenthal and Elder (2002, this volume) present
evidence that slab avalanching is a chaotic process.
This accords with other findings of size distributions
consistent with self-organized criticality (Birkeland and
Landry, 2002).

Table 4 gives the distribution of maximum size
classes for the summit ridge for the last three years.
Note the relative under-representation of class 1 events
when compared with Table 2.

Table 4. Distribution ofmaximtm1 avalanche size class
for 37 paths on the summit ridge ofMammoth
Mozmtainfor 104 control days, 1999/2000 through
200112002.

G Size: None 1 2 3 4 5 ]Occurr-;;}ces~u 57 5 22 17 2 1
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Ifa major source of decision tree error is chaotic
avalanche behavior, probability estimates of multiple
avalanche measures may prove more important than the
absolute accuracy ofanyone tree. Terminal nodes are
often heterogeneous and their values are simply the
means or modes (depending on tree type) of the
responses within them. This suggests perturbing initial
conditions to produce ensemble forecasts of measures
like crown size, size class and path length.
New problems will arise such as how to employ such
forecasts and how to resolve inevitable conflicts among
them.
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6. Conclusions

We return to the five questions posed in the
introduction, drawing on the results of the three studies.

1. Decision tree models can be useful forecasting
tools and are generally conservative in that they err on
the side of overestimating the size of avalanches to
which workers may be exposed.

2. Increasing the size of the learning sample does
not improve overall tree accuracy but may improve
estimates of extreme events. The use of multiple trees
estimating different avalanche features like size class
and class size improves estimates of extreme events.

3. Physical features such as maximum crown size
can be well modeled and forecast with decision tree
methods.

4. Hourly data from a remote instrument network
can drive region-specific forecasts of class and crown
size. The trees are small, with low misclassification
rates compared with those for models applied to the
entire mountain. This is partly because of the size of
the learning sample and partly because ofmore
homogeneous regional conditions.

5. Chaos may impose fundamental limits on the
accuracy that can be anticipated from any statistical
model. The most useful products of such models may
be probability distributions ofworkers being exposed to
large avalanches.
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