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Abstract: We present evidence that slab avalanching is a chaotic process. A 20-year set of 8062 avalanches
running on more than 140 paths at Mammoth Mountain was examined The distribution of crown sizes greater
than a given size is scale invariant (fractal) over the entire mountain and on individual paths. Chaotic systems
often exhibit fractal statistics. We reconstruct the phase space portrait and resulting attractor for crown size on
one avalanche path for the period 1982/1983 through 2001/2002. Independent measures of the attractor, including
comparison against surrogate sets of stochastic data, indicate the time series is deterministic and that the attractor
is chaotic.
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1. Introduction

Are slab avalanches chaotic? Chaos results from
deterministic mechanisms operating in nonlinear
dynamical systems. Large differences in system
evolution flow from small differences in initial
conditions. Chaotic systems are therefore predictable in
the short run but completely unpredictable in the long run.
Short-term physical models give way to long-term
probability estimates.

The 8062 avalanches recorded at Mammoth
Mountain, CA since 1982/83 follow a power law of the
form

(1)

where N is the number of crown sizes larger than linear
measure 1', C is a constant and D is the fractal dimension
(Mandelbrot 1982). The distribution is scale-invariant
with D=2.6 (Figure 1).

Fractal distributions are often exhibited by chaotic
systems (e.g., Turcotte 1997). They can reflect
underlying chaotic processes because those processes
operate over a wide range of scales without themselves
having an inherent scale. Snow avalanches seem likely
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candidates for exhibiting chaos. Physical properties like
temperature, degree of sintering within and between
layers, density, vapor pressure gradients, grain size, grain
shape and surface energy balance evolve at different rates
from point to point over all scales during the season.
There is not inherent scale to stratigraphy, or the
distribution of strong and weak layers.
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Figure 1. Log ofN, the number ofcrown sizes greater
than r (meters) plotted against r for Mammoth Mountain,
1983-2002.

One of the best-known signatures of chaos is the
chaotic attractor, the map or image of the states the
system assumes. The attractor exists in phase space, an n
dimensional space populated by lagged values of a single
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variable. For example, a lag of 1 produces a set of points
in n-dimensional space with coordinates x(t), x(t+1), ...
x(t+(n-1)).

The number ofphase space dimensions is the
embedding dimension. An attractor can be embedded in
different numbers ofdimensions; one requiring many
dimensions for full expression can still be well defined
and exhibit chaotic behavior in fewer dimensions.

A set of sequential points on the attractor is a
trajectory. Chaotic trajectories have common
characteristics [Williams 1997]. They are restricted to a
limited region of the phase space, visit some regions more
frequently than others, and it do not intersect.
Trajectories that are arbitrarily close on the attractor
diverge, dooming long-range prediction. Divergence is
not random, however, so short-term physical modeling
can be potentially fruitful, allowing deterministic or
predictive applications.

values, would not fundamentally affect the analysis, and
was therefore ignored. To avoid singularities 1 was added
to all values and the natural logarithm of this yielded the
final time series (Figure 3).
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Figure 3. Time series ofcrown size in the Upper Cliffs,
1982/83-2001/02

We determined embedding dimension by the method
offalse nearest neighbors (Kennel et al., 1992). Distant
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Figure 2. Log ofN, the number ofcrown sizes greater
than l' (meters) plotted against l' for the Upper Cliffs
avalanche path, 1983-2002.
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The time series was examined for autocorrelation
and periodicity. The correlogram computed to a lag of
100 shows the data to be free ofautocorrelation while
spectral analysis shows the data are essentially aperiodic.
Both measures are within the 95% confidence interval.
We therefore adopt a lag of 1 for reconstructing the
attractor.

We explored possible chaos in slab avalanching by
using a single avalanche path at Mammoth Mountain in a
case study. We selected crown size as the dependent
variable and analyzed it for signs ofchaos.

We examined an irregular time series of crown sizes
on 416 control days during the winters of 1982/1983
through 200112002 on the Upper Cliffs avalanche path.
Like the mountain as a whole, the number of avalanches
larger than a given size l' varies as a power of 1', with
D=2.17 (Figure 2). Smaller D indicates greater relative
abundance oflarge avalanches than for the entire
mountain.

In contrast, trajectories ofnon-chaotic attractors
converge to a single set of points that are periodically
revisited. The set may be a single point or many points in
a complex orbit, but eventually the trajectory intersects
itself and the cycle repeats.

2. Methods

The slope is tested with explosives every control
day. It is permanently closed to skiing so the snow is not
otherwise modified. Gaps between control days in a
single season vary with storm cycles from a day to many
weeks. Ifan avalanche does not occur crown size is
simply recorded as "0" on the occurrence chart, but non
avalanche days are not equivalent. They are unique in
loading, deposition, avalanche history and evolution. We
replace "0" with negative new snow depth because crown
depth is positive. Loading zones receive more new snow
than the study plot, and the difference could be estimated
from crown sizes for a given path. However, this would
only introduce a constant scaling factor for the negative
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Figure 4. Correlation dimension v. embedding dimension,
Upper Clifft crown size.

Correlation dimension was calculated over a range
of!: from 0.5% to 80% the attractor diameter, for two
through ten dimensions (Figure 4). Only values up to
about 10% the attractor diameter are actually useful.
Correlation dimension remains approximately constant

N is the total number of points in the set, G is the
Heaviside function accepting only points of separation
less than 1:, and separation is computed for all pairs of

pointsxi and x j on the attractor. Williams (1997)

provides a clear discussion of correlation dimension.

Lag 1 and embedding dimension three reduce the set
to 414 points. Another problem arises because 17 triplets
are not unique and will be intersections on the attractor
even though the trajectories do not repeat. This problem is
an artifact ofhuman estimation from a distance, often
under severe conditions. Recorded crown dimensions are
rectangular (width and depth), though few if any crowns
fit this description. Thus many re{;orded crown depths are
identical when in fact few, if any, are. One way to
compensate for this would be to randomly perturb the
measurements a small amount. At this stage of
investigation it is both simpler and sufficient to recognize
apparent trajectory intersections as false nearest
neighbors.

for embedding dimensions three through five, the
maximum reasonable estimate given the set size (see
below), suggesting an embedding dimension of three.

The second test modified that ofKaplan and Glass
(1992). The principal plane in Figures 5 and 6 (discussed
below) was divided into a 12-row by 17-column coarse
grid of squares. For a large data set (e.g., iterations of the
Lorenz equations) each pass ofthe trajectory through a
square generates a unit vector with direction determined
by where it enters and leaves a square. All unit vectors in
a square are added and length of the resultant vector
calculated and divided by the number of passes through a
square. For deterministic data, vectors in the same region
of phase space will have similar orientations and the

We applied three tests for determinism to the time
series. The first used surrogate data. We generated ten
sets ofrandom numbers, each with the same length,
distribution (normal), mean and standard deviation ofthe
avalanche time series. The random series were lagged
and embedded in three dimensions. Our test statistic was
the correlation dimension; the null hypothesis was that
there is no difference between the correlation dimensions
of the crown size attractor and the attractors constructed
from the lagged random series.

The general principal behind plateau onset when
plotting correlation dimension against embedding
dimension is that distances between points increase
geometrically with the number of dimensions. Because
they are uncorrelated, random points will continue to
separate and fill the available embedding space as the
number of embedding dimensions is increased. They will
therefore graph near the 1: 1 line in a plot such as Figure 4.
In contrast, deterministic data of dimension n will
(ideally) remain n-dimensional as embedding dimensions
are added beyond n. Onset of a distinct plateau is delayed
in small datasets (Ding et aI., 1993) so the absence of a
true flat region in the plot is expected, as is the sharp
slope increase that begins at embedding dimension 6.

(2)
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An independent estimate of embedding dimension
using the correlation dimension (Grassberger and
Procaccia 1983a,b) is consistent with the false nearest
neighbors estimate ofa three-dimensional lag space.
Correlation dimension measures the probability ofpoints
being within a radius I: for each point on the attractor over
a wide range of 1:. It is determined by estimating the slope
of the scaling region in a log plot of correlation sum C
against 1:, where

points on an attractor may appear close together when
viewed in a lag space with too few dimensions. These
false neighbors will separate as the attractor "unfolds" in
higher dimensions until the proper embedding dimension
is ~eached. 'We considered all pairs ofpoints embedded in
up to seven dimensions and tested with a wide range of
tolerances. Even relaxing those tolerances and permitting
the number of false nearest neighbors to reach 1% of the
total number of point pairs suggests the number of
embedding dimensions is at most three.
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Figure 6. The vectorfield sho·wing circulation around the
attractor. Arrow length is proportional to the distance
between points. Data points are located at the vector
tails.

The attractor is projected onto the second and third
principal axes in Figure 7 and is viewed from the right
hand edge of Figures 5 and 6. Circulation here is counter
clockwise. The horizontal axis (second principal
component) is exaggerated 2:1 and this projection lacks

resultant vector will be close to unit length. Orientations
for random data will tend to cancel so length of the
resultant vector will approach 0 as the number of
trajectory passes through a square increases. Our set is
small and points are distributed sparsely about the plane.
Of204 squares, 80 contain from 1-32 points; ten squares
contain two consecutive points on a trajectory and two of
those contain three consecutive points. We therefore take
the trajectory from each point in a square, treat each as a
unit vector and calculate the resultant vector.

A third indicator of determinism is the apparent
onset of a plateau at embedding dimension three in the
correlation dimension measure (Figure 4). We discuss
this concept further below.

3. Results

Figure 5 shows the attractor projected onto the first
two principal axes. Points are not normally plotted on
attractors but in this case they add definition. The
attractor is a torus, exhibiting a double-lobed or bow tie
distortion. Figure 6 plots the vector from each .point on
the attractor toward the following point; arrow length is
normalized to largest distance between consecutive
points.
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Figure 5. The attractor and data for avalanche crown
size projected on thefirst two principal components axes.

Circulation is clockwise around a central void, as it
sometime is around each of the lobes. The right lobe
comprises productive avalanche cycles with size
increasing to the right. The left lobe contains only
negative crown sizes: storm cycles or series of storm days
that failed to produce avalanches.
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Figure 7. The attractor and data projected onto the
second and thirdprincipal axes. Note the different scales.

the structure prominent in the first. Recall that the false
nearest neighbors estimate of embedding dimension
suggested at most three dimensions. The first two
principal components account for only 70% of the data
variance but much of the noise appears to be concentrated
in the third
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All three tests of determinism indicate the time
series is deterministic. The first uses the ten surrogate
data sets. The null hypothesis is that there is no
difference in correlation dimension between the crown
size attractor and the random number series. The crown
size attractor correlation dimension is 2.48. The surrogate
set correlation dimensions range from 3.17 to 8.14, with
mean 5.39 and standard deviation 1.77. The attractor
correlation dimension falls entirely outside the range of
those for the surrogate sets and the null hypothesis is
rejected. The higher correlation dimensions for the
surrogate data indicate that the random data fill more of
the available embedding space volume and points are
generally more remote from one another than those on the
crown size attractor.
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The lengths of the resultant vectors for the second
test on the gridded data produced vectors generally near
unit length and are plotted in Figure 8 as a function of the
number of observations in a box. This result indicates the
trajectories are well aligned. Figure 9 plots the resultant
vector for each box on the coarse grid. The plot also
clarifies circulation in the core region of the attractor.
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Figure 9. The coarse-grained circulation summarized in
Figure 8 plottedfor each box. Res~dtant vectors originate
at box centers, marked by ticks. Boxes are numbered 0,0
through 16,11.

Fractal crown size distribution could result from a
fractal distribution of features (bowls and gullies)
comprising the avalanche paths. The primary argument
against this is that the size classes are path-specific.
Second, though many landscapes are fractal, Mammoth
Mountain is a young volcano built by a series of eruptions
ending 50,000 years ago. It is characterized by smooth
pumice slopes and is not heavily eroded. Five evenly
spaced elevation contours from 2900m to 3300m were
chosen from a 7.5' USGS topographic map of the
mountain and their lengths were measured with a divider
counting measure [Mandelbrot 1982] on scales from 50 to
3000 m. Contours quickly approach a constant length; the
terrain is not scale invariant and therefore not fractal.
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Figure 8. Length ofresultant vectors for the 12 by 17
coarse-gridding ofthe principal plane in Figures 5 and 6,
with standard error ofthe estimate (whiskers).

4. Discussion

Trajectories orbit a central void near (0.47,0.00) in
Figure 5. In the right lobe point density decreases away
from the center as expected from the fractal crown size
distribution; small avalanches are more numerous on all
scales than large ones. Decrease in point density as one
moves outward into the left lobe may be explained by the
fractal distribution of new snow layers measured at the
study plot (not shown).

We caution that our data set, like most from earth
science, is small by chaos standards. Most measures of
chaos assume samples numbering many thousands. This
small sample size is a problem for statistical tests of chaos
and for evaluation of the attractor. An aperiodic orbit in
a small data set may prove periodic when the set is
extended to tens of thousands of cases.

We must therefore view the results in Figure 4
cautiously. Estimates of correlation dimension can be
spurious for small data sets where few points lie within
small radii relative to the size of the attractor and it is
difficult to fit a line to relevant points. The maximum
embedding dimension reasonably estimated from

. correlation dimension is 210gN/log(lIr), where ris the
maximum radius within which pairs ofpoints are
evaluated and N is the number ofpoints (Eckmann and
Ruelle 1992). Estimated embedding dimension must be
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