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DECISION TREES PREDICTING AVALANCHE RESPONSE: TOOLS FOR TRAINING?

activity. The human forecaster takes these factof'Sl
and developments into account in an experience­
based assessment of the likelihood of avalanche
occurrence over specific areas for a given time
period. Computer software provides improved
tools for handling and interpreting data to relate
present observations with past conditions..
Graphical. representations of the quantitative
analyses show structure in data sets relating
weather factors and avalanche activity.
Classification and regression trees produce
graphical portrayals of structures found in historical:
observations, leading from an item by item
hierarchical consideration of critical factors to the
type of avalanche response expected based on
existing records.

2. REGRESSION TREES AS A TRAINING TOOL

Over the past few years, we have
examined extensive data sets of avalanche
occurrence and coincident meteorological factors
from Mammoth Mountain, California and Alta, Utah
(Davis et aI., 1996, 1998, 1999). We used
classification and regression trees to parse the
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1. INTRODUCTION

ABSTRACT: This contribution shows examples of decision trees relating weather and between-storm fac
to expected maximum avalanche size based on the historical records from Mammoth Mountain, Califom'
and Alta, Utah. The structure of the trees involves making binary (yes/no) decisions (e.g. 24-hour precipitati
> 40 mm) to proceed from one decision node to the next until the probable response to the given conditio
is reached (e.g. maximum avalanche size =3). At each node the decision trees provide the critical factori
distinguishing one situation from another. We suggest that the decision trees in poster form may provi
useful and important training guidelines for avalanche workers by increasing their historical perspective, an
by emphasizing the variety and range of factors contributing to avalanche release.
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In the early 1950's, Monty Atwater
described and quantified a number of factors
critical to avalanche release in the Wasatch
Mountains of Utah (Atwater, 1954). These factors
have been adopted and modified for local use
around the world. Operational forecasting by an
individual combines such factors with the
forecaster's personal experience, knowledge and
intuition. Only the elementary factors are readily
transferable between forecasters. A high level of
competency in forecasting depends on the
experience, knowledge and intuition that may
develop with many years of work in the field.
Because these ingredients to a forecaster's
success are difficult to transfer to others, a great

. deal of knowledge is lost when a seasoned
forecaster leaves the field and is replaced by a
novice. Tools that help new avalanche
practitioners assimilate avalanche related data
would help train those new to the field, however,
such tools are rare.

Storm related factors and between-storm
developments in the snowpack affect avalanche



. to sets of decision rules that related the
?ata Inndent variables to the observed avalanche
Indep~ses. The decision trees were able to explain
respo n about 65 to 98% of the observed
be~e~e depending on the dependent variable
va~lande~cribed and the combination of the .
being . . d
. d endent variables being use .
In ep In examining our own results, we found

t the graphical version of regression trees
tha ided a relatively simple means to understand
~o~omPlex relationships between weather and
sn~wpack related variables used in assessing

Table 1. Weather and snow factors.

1. total snow depth
2. 24hr new snow depth
3. 48hr new snow depth
4. 72hr new snow depth
5. 24hr total precipitation
6. 48hr total precipitation
7. 72hr total precipitation
8. 24hr average wind speed
9. 48hr average wind speed
10. 72hr average wind speed
11. (24hr snowfall depth)x(24hr wind speed)4
12. (48hr snowfall depth)x(48hr wind speed)4
13. (72hr snowfall depth)x(72hr wind speed)4
14. (24hr total precip.)x(24hr wind speed)4
15. (48hr total precip.)x(48hr wind speed)4
16. (72hr total precip. )x(72hr wind speed)4
17. west: (24hr snowfall depth)x(24hr wind speed)4
18. northwest: (24hr snowfall depth)x(24hr wind
speed)4
19. north: (24hr snowfall depth)x(24hr wind
speed)4
20. northeast: (24hr snowfall depth)x(24hr wind
speed)4
21. east: (24hr snowfall depth)x(24hr wind speed)4
22. southeast: (24hr snowfall depth)x(24hr wind
speed)4
23. south: (24hr snowfall depth)x(24hr wind
speedt
24. southwest: (24hr snowfall depth)x(24hr wind
speed)4
25. maximum air temperature
26. minimum air temperature
27. degree days
28. cumulative vapor pressure difference
29. cumulative settlement
30. starting snow depth of year
31. average snow depth increase from start of year

probability of avalanche occurrence. One of the
strengths of decision trees is that results are
read'l .IYInterpretable, in contrast to similar

relationships described by polynomial expressions,
differential equations, etc. Decision trees are also
ideally suited for explaining hierarchical
relationships typical of processes that exhibit
nonlinear behavior, such as avalanche occurrence.

3. WEATHER AND AVALANCHE DATA

Avalanche and weather observations were
analyzed for ten years (1984-1993) for Alta and
eight years (1989-1998; two years missing) for
Mammoth, with 1895 and 890 avalanche days for
each site, respectively. We used data for the
maximum size of avalanche occurring on a given
day as the dependent variable in this example.
Independent variables included 31 separate
factors that were independently measured at the
field sites, were a combination of the measured
factors, or were derived from the measured
factors. See Table 1 for the full suite of variable
used in the original studies. The examples
provided in this presentation use a subset of the
total number of independent variables because of
space considerations.

4. RESULTS

Figure 1 shows the decision tree result for
predicting/parsing the maximum size class of
avalanches from the Alta data set. Figure 2 shows
the Mammoth Mountain result. Discussion of
these results can be found in detail in Davis et al.
(1994, 1996, 1999). In this treatment we would
like to consider the potential value of graphical
results similar to Figure 1 and 2 as a training tool
for avalanche practitioners, printed of course in a
very large format. Figure 3 is a clipped branch
from the Alta tree (Figure 1), which shows only the
right side of the initial decision and its branches
and nodes. Circles represent nodes and squares
represent terminal nodes. The values inside the
circles or squares represent the decision outcome,
i.e. probable maximum size avalanche observed
under the set of decision rules. The values under
the circles and squares represent the
misclassification error rate. For example, the
misclassification error rate in the root node (top of
the tree) is 535/1895 and the root node value is
NONE. These values mean that 535 (28%) of the
total 1895 cases classified in the root node are
incorrectly classified as NONE, and 1360 (72%)
are correctly classified. The values listed in the
branches represent the decision rule for the
particular split. For instance, in Figure 3 the first
decision is based on the 48-hour new snow depth
and the critical value is 0.16 m. This represents
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Figure 1. Decision tree for maximum size class of avalanches from the Alta data.
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· e 2 Decision tree for maximum size class of avalanches from the Mammoth data.
FI9ur .
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Figure 3. Right side of decision tree for Alta (Figure 1) showing most correctly modeled daCi
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riable 3 in Table 1 and is listed in Figure 3 with
va variable name base48. Note that the left hand
th:nch from the root node has been clipped for
br sentation purposes and the value at the
prerninal node is meaningless. The continuation of
tar b' F' 1that branch can e seen In Igure .

An example from Figure 3 can be
arnined for illustration purposes. We will follow

f:e right hand set of decision rules on the partial
tee from Alta (Figure 1). First we examine the
~vemight weather record. If the cumulative new
snow depth over the past 24 hours at the base site
is greater than 0.16 m, then we move to the right
down the tree. If the cumulative 48-hour
precipitation (water equivalent of the new snow ­
variable 6: ppt48) is greater than 0.03 m, then we
continue again to the right. The next decision is
based on the previous 24-hour new snow depth
(variable 2 in Table 1 and listed as base24). If the
value exceeds 0.5 m, then we can expect, from the
experience in the data set, avalanches up to size
class 4. Looking at the misclassification error rate
below the terminal node, we see the value 12/23.
This means that under the previous conditions that
satisfied this set of decisions, 11 of the 23 days
produced avalanches of the size 4 class.

If we follow the left branch at the last split
we see the size class value of 3 in the node. The
misclassification error rate under that node
suggest that although the size 3 events are most
probable with the information given to that point,
104 of the 157 observations resulted in a size
class different than 3. Clearly we need more
information to reduce our uncertainty, so we
continue down the tree. If we follow the right split
from this node and have relatively warm days
(higher degree day factor) followed by low 24-hour
new snow depth, we se no avalanches (NONE) as
the probable response. We find that 100% of the
observations agreed with this classification, with a
successful classification of seven out of seven
observations. Other examples can be followed
down the tree in Figure 3.

In previous the example, we hope that
several important characteristics of the analysis
have been noted. The decision tree structure and
Use follows a logical set of decisions based on
factors that make physical sense to the
experienced user. A less experienced user can
easily fallow the decision process and gain a feel
:~r the critical f~ctors, and their interdependence,
h.at lead to a given result. The trees exhibit a
lerarchical structure that allows one to uncover

the entire sequence of decisions that would
otherwise be difficult to separate. For example, in
our analysis above, 24-hour new snow depth may
actually be more important than 48-hour new snow
depth, but the tree suggests that if the 48-hour
value does not reach 0.16 m, then a different set of
rules must be applied to determine a probable
result.

One should also notice from examining
any of the trees that many terminal nodes have the
same value. Clearly we would expect this
intuitively, partly because there are only six
possible outcomes: four avalanche sizes (2-4 - see
Davis et aI., 1999) and no avalanche. However,
the trees show the user the many possible
scenarios that can lead to a given outcome.
Again, this is potentially a valuable training lesson
to the less experience avalanche worker. The
trees should give them an appreciation for the
complex set of processes and possible conditions
that lead to avalanching, and help them make
some sense of the overwhelming possibilities.

Finally, the trees are effective in detailing
the set of conditions that lead to extreme events.
We never have significant sample sizes to
definitively predict extreme events, however, these
events are of great interest to us. While we have
large uncertainties and low confidence in a
statistical sense, looking at the conditions that led
to extreme events in the past is a valuable tool and
can be added to part of a practitioner's decision
process.

5. SUMMARY

We suggest that binary decision trees
have potential as a training tool for avalanche
practitioners because they:

follow and demonstrate a logical thought
process to the user;

demonstrate in a simple fashion the
hierarchical structure of complex
relationships, and;

detail the conditions leading to rare
situations or extreme events.

These graphical models may serve as
useful training tools in a formal educational setting,
or as a patrol-room reminder that receives casual
and occasional attention.
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6. FUTURE WORK

We plan to distribute graphical models of
our classification-tree results to the Alta and
Mammoth Mountain ski patrols for feedback and
report on this at a future workshop.
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