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Here eg, is a unit vector represented gravitational force
direction; S1 S2- curvature coordinates of current point
(Korn G.A., Korn T.M, 1968); h=h(s1' S2) is a snow depth,
measured perpendicularly to slope surface; a ij - stress ten
sor i,j =1,2; 1t - snow density; g - gravitational accelera
tion, cosal and cosa2 - directional cosines of displasement
vector u=(ul'uz) in local basis e1,e2, cosal = cosaz=O if and
only if Iu I=0, Ffr - friction force between the snowpack
and underlying surface, c-coefficient of cohesion, f - coef
ficient of friction.

System ( 1 ) should be completed by linear equations
which couple the strains and stresses:
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where E is a Young's modulus, v is a Poisson ratio. Ac
cording to (Nye J.K., 1959, Nefed'ev V.O and Bozhinsky
A.N., 1989) this system of equation should be solved with
Dirichlet boundary conditions uT=O, where is a boundary
of considered surface.

In order to solve this set of equations the knowledge of
all snow parameters is required. Many field experiments
demonstrate large spatial variability and uncertainty of
such parameters as snow depth, coefficient of cohesion,
coefficient of friction and snow density. This fact strongly
motivates a stochastic description of the snowpack prop
erties. Thus, other physical quantities in the model, the
displacement vector u and stress tensor a ij also become
stochastic. In the present study we assume that h, p, care
distributed as a Gaussian random field with a prescribed
expectations, variances and covariation functions, that are
found previously by a field measurements. Our aim is to
find different statistical moments, for example, such use
ful statistical estimates as probability to exceed some
threshold value of stress at every point of slope or prob
ability density function of stress.

The stochastic solution of the problem in this study is
obtained by the Monte Carlo simulation method. In this
method, equations ( 1 ) - ( 2 ) are solved for a large number
of realizations of h, p, c. From the large number of deter-

( 2 )E (~+V~)
a22= 1-v2 aS

2
as,

ABSTRACT
Three-demensional deterministic model of thin elastic
shell on a rigid underlying surface of arbitrary configura
tion is used as approach to a snow slab on the mountain
slope. The finite difference method is used for calcula
tion of stress distributions in the snow cover. Spatial dis
tributions of snow cover characteristics are represented
as stochastic fields which realisations are simulated with
Monte Carlo method. Such characteristics as snow thick
ness, density and cohesion were simulated on a base of
information about spatial statistical structure of these pa
rameters to obtain a stress field over a slope.
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INTRODUCTION
The forecasting of avalanche release can be made using
estimates of current snowpack stress field. Such estimates
may be obtained using an information of snow thickness,
snow density, shear and tensile strength and dry friction
coefficient. Ifvalues of these parameters are known at any
point of the snowpack, one able to compute stress field by
any numerical method and determine potentially danger
ous zones where the stress exceeds some threshold level
of stress.

Such simple scheme rarely may be applied to predict
an avalanche release or to detennine a dangerous zones
in deterI!1inistic manner. The spatial variability of
snowpack parameters is significant and can not be deter
mined in practice with sufficient resolution. This fact.
stimulate the using of probabilistic methods, where the
probability density and covariations of parameters will
be used instead of exact values of them.

PRESENTATION OF mE PROBLEM
We study a stationary deterministic and stochastic problem
of snowpack balance on arbitrary shaped mountain slope.
The problem of calculating the stress field in a snowpack
lying on a mountain slope of arbitrary shape is in fact a 3
dimensional problem. Being solved numerically as 3D it is a
very time-consuming task. As has been shown in previous
studies (Nye J.K., 1959, Nefed'ev V.O and Bozhinsky A.N.,
1989) the 3D problem may be reduced to 2D if the param
eters of snow depend weakly on snow depth.

The mostly appropriate coordinate system for this prob
lem is a local orthogonal basis el , e2, e3 , where el , e2 are
the unit vectors tangential to the two curvature line at any
point of surface, and en=e1xe2 • Here we assume that all
points of considered surface are non-umbilic, hence at any
point two different curvature line exist. Under such as
sumptions the stress field governed by the simple partial
differential equations (PDE) of balance of a thin elastic
non-moment shell (Novojilov V.V, 1962).
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ministic solutions for these realizations, any statistical mo
ments are obtained.

PREPROCESSING
Because of extreme requirement to efficiency we choose a
finite difference method to solve ( 1 ) - ( 2 ) numerically.
In order to apply this method to our problem we should
generate a mesh of curvature lines and build a random
fields of parameters with prescribed distributions and
covariations.

Let us assume that the slope surface has a form: z=f(x,y); ,
x,y,z are Cartesian coordinates. The curvature lines may
be found by solving an ordinary differential equations
(Korn G.A., Korn T.M, 1968):

main using 2-dimentional fast Fourier transform
(William H. Press et al., 1992);

• Transformation by the same way of'l'h(s1'sz),'l'c(s1'sz) and
Yp(Sl'SZ) to their power spectrum 'Ph(kl,kz) 'Pc~,kz) and
't'p(k1 ,kz) ;

• Building the fluctuative component of random field in
space domain by inverse Fourier transform of the func
tions, ho(kl,kz)·",,'Ph(kl,kz)' co~,kz)·",,'Ph(kl,kz) and so on;
After this operation we may obtain a required random
field as a sum of mean value and fluctuation of any
snowpack parameter at all nodes of mesh. As have been
shown, the Cartesian coordinates of nodes may be com
puted using ( 3 ) Now we are ready to solve a problem
( 1 ) - ( 2 ) numerically.

where E=1+(az/ax)2, F=(az/ax).(az/ay), G=1+(az/ay)2,
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Modelling of stress field and exemplifying results.
Substitution of finite difference representation of partial
derivatives into ( 1 ) - ( 2 ) leads to large system of non
linear equations with sparse matrix. We applied a simple
iterative method to solve this system according to
(Nefed'ev V.O. and Bozhinsky A.N., 1989) and calculate
an exceedance rate of stress threshold value and stress
distribution at arbitrary point of slope.

The sequence of field experiments in Khibiny yields
the following empirical formulae for covariations of h,p,c:

N- , aZz/ayZ
- '\I1+(dzldx)2+ (dzldy)2

In practice the mountain slope represented as discrete set
of samples (x,y,z). There is two approaches to calculate
the coefficients of ( 3 ) - either using a B-spline interpola
tion or approximate a surface using quadratic orqubic sur:
face. Both methods guaranty the existence of continuous
first and second order derivatives. '

In present study we used the B-splines package from
Diffpack library (Xing Cai and Hans P. Langtangen, 1994).
For information on it and on the conditions for its use one
may send an E-mail todp-info@si.sintef.no. The package
offers tools for tensor product surfaces with emphasis on
interpolation of discrete data and on features needed when
using splines for solving differential and integral equa
tion therefore simplifies the task of calculating the coeffi
cients in ( 3 ). The programs and packages for surface fit
ting by using the polynomial of degree 2 or 3 are accessi
ble via ftp from netlib. The pair of equations ( 3 ) are solved
by adaptive Runge-Kutta method (William H. Press et al.,
1992).
~he fluctuating component of stochastic fields 1(s1'sz)
,c(s1'sz) and P(Sl'SZ) has correlation functions 'l'h(s1'sZ)
'l'c(s1'sz) and 'l'p(s1'sz) that are obtained by field measure
ments. Building a random field with given properties in
cludes following steps.

• Generat}ilg of Gaussian 0 - correlated spatial random
fields ho (s1'sz)'(;o (s1'sz) and Po (s1'sz) with zero mean
value and given variance;

• Tr:msformation of derived 0 - correlated spatial random
fields from the space domain to the wavenumber do- Fig. 1 Slope of the mountain
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'where .]=""s/+ sl·We choose a typical values h mean=l m,
Pmean=300kglm3 , cmean=1000Nlm2 to demonstrate a results
of modelling.

Other parameters assumed to be deterministic because
, a solution of problem is far less sensitive for their varia

tions than for variations of h, p, c, so they are set to mean
values, namely f=O.4, v-0.3, E=10 7Pa.

Mountain slope geometry accepted for calculation of
snow cover stability is shown in Fig. 1. This surface was
obtained from real profile of mountain by fitting of quad
ratic polinomial. The rms residual does not exceed 20 m.
Fig. 2 shows the probability field of exceeding of thresh
old value by O"thr=12000Pa absolute value of 0", i.e.

M- azz/axa~
- ~1+(az/ax)2+ (z/ay)2

L=, aZz/axz
'l/1+(dz!dx)2+ (dz!dy)2
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Fig. 2 Spatial probability distribution of exceeding a threshhold value of stress.

P( I s I>sthr). It is clearly seen that the geometry of surface
is a master factor that determines potentially dangerous
zones.

Fig. 3 represents a distribution of stress at two arbitrar·
ily choosen points - x=550, y=300 (top panel) and
x=200,y=200. As far as the slope is steeper near first point,
the distribution of stress here has a tail much longer than
distribution of stress near second point.
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Fig. 3 Probability of stress at the point x=550 m, y=300 m (upper
panel) and x=200 m, y=200m (lower panel).
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