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Abstract

Statistical models of different types have been used in avalanche forecasting.
This paper provides a comparison of several types of models in application to
the issue of road closure in Little Cottonwood Canyon. These model perfor
mances are contrasted with those of professional forecasters in the canyon who
make road closure decisions. A variety of methods are presented which address
the issues of statistical modeling and evaluation. A statistical model improves
forec--asting performance.

1 Introduction

The Little Cottonwood Canyon road in Northern Utah is a dead-end, two-lane road

leading to the Alta and Snowbird ski resorts and is the only road access to these

resorts. It is heavily traveled with the daily traffic is greater than 10,000 automobiles

on peak days. It is also highly exposed to avalanche danger. One method employed

to mitigate the avalanche danger to traffic is to close the highway to vehicular traffic.

Actual decisions to close the road are made by highway avalanche forecasters in

the Utah Department of Transportation (UDOT). Previously models were developed

for predicting the occurrence of avalanches crossing the road (Blattenberger & Fowles

1994, Blattenberger & Fowles 1995). Based on those models, decision rules were
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comments.
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developed for deciding when to close the road. It was found that model prediction

augmented by the expert information implicit in the forecaster's actual decisions

outperformed the historical performance of the highway forecasters. In this paper we

briefly describe the data employed in the analysis and the development of the decision

criteria employed. We then discuss different types of models which are currently

employed in this type of forecasting and contrast their performances.

2 The Data

Our orientation towards the road closure decision rather than simply avalanche ac

tivity or avalanche days led to some modification in the data. The variable AVAL

is the event of an avalanche crossing the road. Similarly, the loss function described

below assesses whether the road is closed when an avalanche crosses it. The variable

CLOSE is the event of a road closure. Both of these variables are indicator variables

and are operationally measurable constructs, a key requirement of our approach. Un

fortunately, the constructs are less precise than expected. The observation unit is

generally one day unless multiple events occur in one day; these appear in the data

as multiple observations. The occurrence of an avalanche or, for that matter, a road

closure is a time-specific event. It may happen, for example, that the road is closed

at night for control work with no avalanche. It is then opened in the morning and

there is an avalanche closing the road. Then it is reopened and there is another

avalanche. This then represents three observations in the data with corresponding

values CLOSE=(l,O,O) and AVAL=(O,l,l). An uneventful day is one observation. If

the road is closed at 11:30 at night and opened at 7:00 in the morning it is only coded

as closed within the second of the two days.

Daily avalanche and weather records are available from the 1944-1945 season until

the 1989-1990 season from USDA data dates. After 1989-1990 information is available

from the UDOT Alta Guard Station. Data used in this study begin with the 1975-1976

ski season. This was done because of the loss function, discussed below. Road closure

information was available from Alta Central, the Alta town hall. Unfortunately we
- ~

do not have information on where the road was closed which would be quite relevant

to the loss function. Information regarding avalanche activity was also taken from



the USDA tapes and the Guard station records. The variables considered in this

analysis include those commonly considered which were available in this case. A

specific listing, cursory definitions, and summary statistics are given in Table 1.

3 The Loss Function and The Road Closure De-. .
ClSlon

The decision to close the road is made under uncertainty, unless of course an avalanche

has already crossed the road. This section discusses the consequences associated with

the road closure decision and develops a a decision rule consistent with the historical

behavior of the highway forecasters. There are two types of errors a forecaster can

make: 1) a Type I error occurs when the road is closed an an avalanche does not

happen, and 2) a Type II error occurs when an avalanche happens and the road is

open.

The decision to close the road has significant economic implications. We previously

estimated this at $1,410,370 a day (Blattenberger & Fowles 1994). There are reasons

that this figure may be considered large, but it gives an order of magnitude. We

dodged the issue of the dollar value of a human ,life which would be necessary to

place a dollar value on a Type II error and instead, designed a loss function which

was consistent with the behavior of UDOT forecasters.

Table 2 presents the empirical behavior of UDOT forecasters for historical data.

This table illustrates the asymmetry of the data and the asymmetry of the errors

made. We believe that these asymmetries reflect the potential losses that decision

makers sense.

We assume the highway decision makers wish to minimize the expected losses

associated with their actions. The average daily loss is assumed to be of the form of

the asymmetric loss function:

Loss = k * p +q (1)

In this equation p represents the fraction of the time that an avalanche crosses

the road and it is openj q represents the fraction of time that an avalanche does not

cross the road and it is closed. The term k is a scale factor representing the relative

cost of a Type II versus a Type I error. Both p and q are observable, k is not.
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Figure 1 illustrates the road closure decision as a function of an arbitrary value of

k. The expected loss function from closing the road and from leaving the road open

are both shown. The line with the positive slope is the expected cost of a decision

to leave the road open. The decision rule to minimize the expected cost implies

an implicit cutoff probability of h = l~k' such that the road should be closed for

probabilities greater than k* and kept open for lower probabilities. Previously we

found a value of k = 8 to be consistent with historical performance (Blattenberger &

Fowles 1994).

Using this value, we examine the cost associated with decision errors called the re

alized cost of misclassification (RCM). The loss function employed for this calculation

is the one discussed above, with k=8. RCM is computed for three types of statistical

models as a function of the cutoff probability and actual events of avalanches crossing

the road. Models are fitted on historical data from the 1975~1976 season to the 1991

1992 season and evaluated on two holdout data sets, the 1992-1993 and 1993-1994

seasons. The next section introduces these models.

4 Statistical Models & Evaluation

Traditionally, the goal of modeling data is to arrive at a mathematical representation

of the relationship between an observed response variable and a set of observed ex

planatory variables. Uses of obtained models might include inferences as to whether

or not certain explanatory variables contribute to the response or to discover the

nature of such a relationship. Models are often used to estimate the effect on the

response variable from changes in one of the explanatory variables. In this paper,

the primary goal of development is to arrive at a set of predicting models and to

operationally monitor their performance. Part of customary performance evaluation

relates to how well data fit the assumptions. Model-data fit is important when op

timal models are sought but in fact may be irrelevant to real-wodd applications of

models. This section begins with a quick look at common models and their associ

ated assumptions. We next discuss ways to compare models when forecasts ge£..erated

by the models exhibit asymmetric errors. The section concludes with a comparison

of linear, logit, and nearest neighbors performance for the 1992-1993 and 1993-1994



seasons.

A widely used statistical characterization is· that a response variable can be ex

pressed as the sum of two components, a systematic component and a residual or

error component. The systematic component is the summary of how the explanatory

variables influence the response. Residuals account for any remaining unexplained

component. In this section we briefly discuss special statistical assumptions in this

framework that arise when the response variable is binary, i.e., the response is ob

served or not. Usually, it is characterized has having a binomial distribution related

to a success probability, p.

One of the simplest and most easily computable models is linear regression. Or

dinary least squares (018) finds a predictor, p, based on a linear combination of

the explanatory variables that minimizes a function of the discrepancy between the

response value and the predicted value. Minimal assumptions are required to use

this model although frequently the error term is assumed to be normally distributed.

This assumption is only required when inferences about the estimated parameters

are to be made. One drawback in using 018 for binary data is that a convenient

assumption regarding the constant variance of the error is not valid. A more serious

problem is that there is no assurance that the fitted probabilities fall between zero

and one. It is important to note that for our purposes in terms of road closure, this

is not an obstacle. A fitted probability greater than one simply means, for example,

that the data say there is a high probability of avalanche, emphatically so!

The logistic transformation ( logt!:p ) overcomes this difficulty and also has the

desirable property that the fitted probabilities maximize entropy. Entropy is used

as a measure of information or uncertainty. High entropy indicates high uncertainty.

When inferences are to be made from a distribution (such as close the road) a choice is

made to select the distribution which maximizes entropy and yet remains consistent

with the constraints implicit in the data. This then employs all the information

contained in the data with minimal assumptions. No statistical assumptions are

made about the distribution of the residuals.

- K-Nearest neighbors (NN-K) is a simple non-parametric classification rule that

dates from 1951 (Breiman et. al. 1984). It is related to discriminant analysis but

unlike discriminant analysis makes no assumptions that data have a normal distri-
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bution. The procedure does requires that a multivariate metric be defined, usually

Euclidean distance, and searches over the set of data for the K nearest neighbors

to a given point. Probabilities for the response variable can be based on counts of

occurrence relative to K. For example, we might find that when looking at a set of

30 nearest neighbors for a given day, avalanches occurred 15 times in that set. Our

fitted probability of avalanche for that day would be one half. Limitations of nearest

neighbors are that results are sensitive to the choice of the distance function and to

how many neighbors should be examined. A more serious objection is that it is an

ad-hoc procedure that provides very little information about the nature of the rela

tionship between the response and the set of explanatory variables. An advantage

of K-NN is that it provides an easy and intuitive way to generate probabilities \vith

minimal assumptions.

Logit, least squares, and nearest neighbors 30 and 20 RCM results for the first

holdout season (1992/1993) are illustrated in Figure 2. The implicit cutoff probability

of .111 is indicated by the vertical line. RCM is near the minima at this value

for all four models. Figure 2 demonstrates that for this season all models exhibit

similar performance. Experts' performance for the evaluation season is plotted as the

horizontal line at .202. At their minima, all four models outperformed the experts.

It should be noted, however, that the forecasters are making operational decisions

whereas the models are historical, although results are based on out-of-sample data.

Figure 3 compares the same models for the 1993/1994 holdout season. Here, OLS

is clearly the best model while nearest neighbors do not achieve the RCM performance

that the experts did. Seasonal variation in model and expert performance is a common

thread that we have found in our research and highlights the necessity for expert

judgement and intervention. Ways to merge expert opinion with seasonal varying

weights attached to models is introduces in Blattenberger & Fowles (1995) and is a

rich field for further research.
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Table 1: Descriptive Statistics of Variables Considered
Variable Min Median Mean Max
Total stake in inches 0 68 67.46 150
Total stake over 60 em. (in em.) 0 112.7 114.7 321.0
Interval stake in inches 0 0 3.08 42
Weighted average of interval stake - 4 days 0 4.5 7.51 62
Density of new snow 0 0 .044 .90
Ratio of density of two previous snow days .09 .99 1.07 5.75
Sum of degrees above freezing for 4 days 0 12 19.99 127.00
Settlement of new snow 0 1. .80 1.
Water content of new snow 0 0 .28 3.80
Change in minimum temperature -36 0 .026 31
Minimum temperature -35 18 16.96 46
Maximum Temperature -12 33 32.78 65
Wind Speed 0 9 10.21 55
Road Closure 0 0 .10 1.
Number of avalanches lagged 0 0 .52 31
Size of avalanches lagged 0 0 1.31 72

Table 2: Summary of Avalanche and Road· Closure Decisions for the Entire Sample
Avalanche Activity

Decision Avalanche Occurs No Avalanche Occurs
Close Road 84 253
Do not Close Road 54 3004
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Figure 3

Model Performance for the 93/94 Season t--..
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