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INTRODUCTION

Increases in land use and development in mountainous areas, anticipated warming of the
earth's atmosphere, and the deforestation in alpine regions from air pollution, acid rain,
previously poor forestry practices, and land misuse have renewed attention to the impor
tance of reliably recognizing natural avalanche paths and predicting deposition zones. The
impact pressures induced by an avalanche in the runout area motivate zoning restrictions
and building code requirements. Existing avalanche models are generally inadequate. There
fore, the current trend in the research of flowing snow and other materials is still directed at
determining the predominant mechanisms governing the motion.

The phenomena collectively referred to as avalanches can be physically characterized as
multiphase gravity flows, which consist of randomly dispersed, interacting phases, whose
properties change with respect to both time and space. Lang and Dent (1982) describe an
avalanche as "the transient, three-dimensional motion of a variable mass system made up
of nonrigid, nonrotund, nonuniform assemblage of granular (snow) fragments flowing down
a nonuniform slope of varying surface resistance." In this sense, an exact analysis of the
motion of an avalanche is perhaps an unattainable goal.

Currently, the most widely used and applied avalanche models utilize a center of mass
approach (i.e., the mass is accretized at one point) and are based on ideas first suggested
by Voelimy (1955). By using the Prandtl mixing length approach (see for example Pao
1961), Voellmy related the stress at the base of the flow to the square of the velocity, and
then postulated an additional Coulomb friction force. However, he assumed uniform, steady
conditions and derived a method that is difficult to apply, in the sense that a number of
subjective parameters must be predetermined in order to obtain results that match observa
tional data. Although Voellmy's model has been successively improved (Salm 1966, Mellor
1968, Perla et al. 1980), these models have not advanced beyond the aforementioned center
of mass approach. The height of the flow may be included as a parametric value, but is not
calculated as a function of space and time.

Other models attempt to idealize these complicated materials as linear Newtonian fluids
(Brugnot 1979, Dent and Lang 1980), leading to the Navier-Stokes equations that may be
solved numerically. Although this type of constitutive relation perhaps should not be assumed
to adequately describes these media, some success has been achieved in modeling certain
aspects of avalanche behavior with this approach. Apparent viscosities may be measured for
fluidized solids (e.g. Siemes and Hellmer, 1962). The ease with that particles fluidize and the
range of conditions that sustain fluidization vary greatly among solid-fluid gravity current
systems.

When considering snow avalanches in particular, due to the nonlinear behavior, and
strong stress and strain history dependence of snow, constitutive equations tend to be quite
complicated. Both continuum theories (Salm 1971, 1975; 1977, Brown et al. 1973, Brown
and Lang 1973, Brown 1976, 1977, 1979, 1980a, 1980b) and microstructural theories (St.
Lawrence 1977, St. Lawrence and Lang 1981, Hansen and Brown 1986, Hansen 1985) have



been proposed and applied successfully to various, specific problems in snow mechanics. But
to some extent all require detailed information on the particular snow type in question, that
entails a wide range of possible parametric values.

Another hindering factor has been the availability of experimental data on avalanche
motion. Field measurements are limited and difficult to obtain (see, for example, Norem et
al. 1985, Gubler 1987), and similitude is difficult to achieve when attempting to scale-down
and model such flows in the laboratory. For example, Lang and Dent (1980) utilized a 1/100
scale model of snow, and successfully matched the Froude number, but not the Reynolds
number. This is not an unusual problem in scale modelling when the same "fluid" is used.
For a scale model with length l/n of the prototype, equality of the Reynolds number requires
a model characteristic speed ofvrn = nvp , where vp is the prototype characteristic speed.
Equality of the Proude number requires V rn = vp / Vii. Both requirements cannot be satisfied
by using the same "fluid" in both model and prototype. Other recent attempts to scale model
avalanche flow include Nakamura et al. (1987), Pliiss (1987), Hutter et al. (1988), a~d Lang
et al. (1989).

Savage and Hutter (1989) demonstrated that one may adequately describe a flowing
mass of cohesionless, granular medium as an incompressible continuum that obeys a Mohr
Coulomb yield criterion. If the moving mass is assumed to be long and thin, a nondi
mensionalization scheme (resembling shallow-water theory) may be employed, which renders
more tractable governing equations. By neglecting the boundary layer, a classical approx
imation method (first introduced by von Karman (1921) and later refined by Pohlhausen
(1921)) is employed, inthat the equations are averaged over depth and a velocity profile is
assumed. By defining a depth-averaged streamwise velocity and assuming incompressibility,
these equations may be reliably solved with a Lagrangian finite difference scheme, such that
the computational grid is advected with the material.

The purpose of this investigation was to extend this theory to three spatial dimensions and
allow for the inclusion of a boundary drag term, and test its applicability against experimental
results. The governing equations are derived in a curvilinear coordinate system that allows
for topography to vary as in a natural avalanche path. The only assumptions included in the
development are incompressibility and the application of a Mohr-Coulomb type material law,
while also allowing the inclusion of a boundary drag term. A nondimensionalization scheme
is employed, choosing three characteristic length scales. By depth and width averaging the
balance equations for the theory in three spatial dimensions, sidewise spreading of the mass
may be included. A Lagrangian finite difference scheme is applied to numerically integrate
the sets of equations that are derived. The numerical simulations are then compared to the
laboratory findings. The experimental results have been presented in Lang et al. (1989).

The analytical results indicate that a flow transition regime exists that is analogous to a
laminar to turbulent transition in a fluid, and determines the applicability of the boundary
drag term. Results are reviewed and suggestions are made for appropriate investigations
implied by these results.

MATHEMATICAL FORMULATION

The governing equations and closure relations are proposed to represent the flow of a
cohesionless granular medium on any given topography. By describing granular media as
multiphase materials, intraphase balance equations for mass, momentum, and energy and the
associ3.ted boundary and initial conditions may, in principle, be written. But the resulting set
of equations is usually too complicated to allow for a solution. For example, the application of
kinetic theories for granular flow would in general require the solution of the energy equation,
determination of granular temperatures, and velocity and density gradients. Szidarovsky et
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al. (1987) discuss the inherent difficulties in attempting to apply these theories to chute flows
of granulate. Furthermore, such information is inappropriate for an engineering application.

The goal is therefore to develop a simple model to predict the flow characteristics of the
mass of granulate. A purely mechanical theory is proposed and the granular mass is treated
as a continuum. The concept of representing the granulate as a continuum should pose
no conceptual problem, as a mixture theory approach would require the sum of the phase
interaction terms to vanish in the overall balance equations, in any case.

The requisite is a suitable constitutive assumption. In order to justify the following
approach, it is necessary to consider the different flow regimes in question, and also the
experimental results from other investigations.

First, two extreme flow regimes for granular media are commonly recognized (see, for
example, Savage 1984). At very low shear rates, a granulate may be characterized as a
Mohr-Coulomb material. This implies quasistatic deformation, to some degree. The Mohr
Coulomb law is the basis of Critical State Soil Mechanics (CSSM), and is commonly referred
to as the rupture condition; i.e., it implies impending plastic flow for a static soil mass, as
it predicts the limit equilibrium when the shear stress is equal to the shear strength of the
noncohesive soil. Simply stated, the maximum ratio of the shear to normal stress is equated
to the tangent of the internal friction angle cp of the granulate. For slowly flowing masses of
granulate, the bed shear stress results from the dry friction forces at the particle contacts,
and the Coulomb failure criterion adequately describes these types of flows.

When shear rates are very high and particles are widely dispersed, instantaneous collisions
dominate the behavior of the granulate. Interparticle and particle-bed contacts are brief,
and the fluctuating part of the particle motion cannot be neglected. Kinetic theories predict
quadratic dependence of stress on shear-rate, for rapidly shearing highly dispersed particulate,
and this seems to provide good agreement with the available laboratory data. This extreme
case may be used to describe the behavior of the dust cloud, which only serves to obscure
the true nature of the avalanche, but does not represent any type of snow avalanche activity
that could be construed as destructive, and need not be considered.

The real avalanche flow situation in most cases may develop from a low shear rate flow into
an int'ermediate regime where both long-term particle contact and instantaneous interparticle
collisions contribute to the generation of stresses. This was shown to be the case in the
previously discussed experiments in Lang et al. (1989), for the artificial avalanches released at
angles exceeding 35°. Observations (Dent and Lang 1981) and Doppler radar measurements
(Gubler 1987) on natural snow avalanches confirm that a dense slowly deforming mass rides
on a rapidly shearing layer, and mayor may not be encompassed by a highly suspended dust
cloud. This type of flow is more difficult to handle theoretically, as the exact mechanisms have
not yet been clearly defined. Savage (1983) suggested representing the total stresses as a linear
sum of the rate-independent dry friction and a rate-dependent "viscous" part. The question
remains as to how the dynamic friction angle actually changes at lower volume fractions and
higher shear rates. Following the work of Savage and Hutter (1989), the governing equations
of mass and momentum balance are derived in three spatial dimensions in a coordinate system
that allows for any given topography. An angle ( is defined such that ( is a function of xl,
the longitudinal direction, and defines the local inclination angle of the generatrix,

(1)
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It is then possible to define Cartesian components zi in terms of the curvilinear coordinates Xi

and th.e natural basis { g. }. An orthonormal basis { ~i } in terms of the covariant components
. -t

of the metric or fundamental tensor of the space gm n =!J . 9 is defined and applied.
-m -n

The Eulerian form for mass balance is



dp(;f,t) ~
dt +P(;f,t)V7 x 'Q(;f,t)=O . (2)

In terms of the physical components of Q and assuming that the granulate-air mixture is
incompressible, mass balance is written as

(3)

The principle of balance of linear momentum can be written as

(4)

where ~ is the Cauchy stress tensor, 12 is the body force vector and f!c is the acceleration
vector. The equations of motion can be expressed in terms of the physical components as
follows:
in the xl length direction as

in the x 2 width direction as

= P [V<l> a~~~> ]

(
a( ) [aV<2> aV<2> aV<2>]

+p 1 + axl x
3
~ + V<2>'7fZ2 + V<3>---a;J l

and in the x 3 depth direction as

(5)

(6)

(7)

[
aV<3> 2 a( ]

= P V<l>~ - V<l> axl

(
a( 3) [aV<3> aV<3> aV<3>]

+p 1+ axl x at + V<2>'7fZ2 + V<3>---a;J .

The above forms for the balance of momentum equations are shown in order to emphasize
the coupling of many terms with the degree of curvature auaxl and the depth of the flow
x 3 .
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The boundary conditions need to be defined at the solid surface, or base of the flow, and
at the free surface.

By defining the free surface as

(8)

and requiring the local and convected rates of change of 1 to balance, the well-known kine
matic condition is obtained,

a1 ~
-+ \7 1·v = 0at - - (9)

(10)

which simply states that the free surface is material, and applies when 1 is generated by
streamlines.
In terms of the physical components, the kinematic condition reads

a1 (a( 3) [a1 a1 ]axl V<l> + 1 + axl x at + ax2V<2> - V<3> = 0

A balance of forces at the free surface requires the total traction to vanish there, Le.

(11)
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The above condition also applies to a continuous material. Reportedly (see Johnson and
Jackson 1987) when this boundary condition is applied to problems concerning granular
media, it tends to introduce a singular behavior of the traction in the neighborhood of
the interface that is physically unrealistic, as the stress tensor vanishes rapidly through a
thickness that is typically less than the thickness of one particle diameter. However, obtaining
"depth-averaged" solutions is intended ,and this difficulty should not be a problem, except
at the flow boundaries.

Furthermore, it is important to discuss the meaning of a "free surface" in a physical
sense. As discussed, it is generally accepted that an avalanche may be considered to be a
flow consisting of three distinct regimes. The dense core of the flow is normally obscured
by a "dust cloud," which is a layer of highly suspended particulate. From observation, this
layer is dominated by the interstitial fluid behavior (Lang et al. 1989). Intuitively, if one
defines the "free surface" as the interface of the core of the flow with the turbulent dust
cloud, it would be more appropriate to consider the drag at this rough interface rather than
a vanishing value of traction. However, it can be demonstrated (McClung and Schaerer 1983)
that inclusion of such a term has a negligible effect on the overall resistance to motion of the
mass.

With these considerations in mind, the stress-free condition is assumed, and the resulting
boundary conditions at the fr:ee surface are

a1 (a( )
[::2 t<2l> - t<3l>] 0 (12)axl t<l 1> + 1 + ax11 =

a1 (a( ) [::2 t<2 2> - t<3 2>] 0axl t<l 2> + 1 + ax11

a1 (a( ) [a1 ] 0axl t<l 3> + 1 + ax11 ax2t<2 3> - t<3 3> =

written in the xl , x2 and x3directions respectively.



At the base of the flow, the surface may be described by a function b = b(x1 , x 2 ), such
that the function b may be arbitrarily defined for a given avalanche bed.

The tangency of flow at the base is expressed by the kinematic condition

1!.' 11 = 0 ,at x 3 = b(x1,x2)

Expanding the above in three spatial dimensions yields

(13)

::1 V<l> + (1 + :x~f) [::2 V<2> - V<3>] = 0 ,at x
3

= b(xl, x
2

) (14)

Applying the assumption that the basal boundary layer is of a thickness proportional
to only a few particle diameters, this layer is neglected. This assumption greatly simplifies
the mathematical formulation, as in this layer collisional and frictional stresses must be
considered. An appropriate boundary condition has been derived by Hui et al. (1984) for
such a case, based on kinetic theory. However, some knowledge of the specularity of particle
wall collisions is required.

By considering only cohesionless, dry granulate, the basal shear traction may be expressed
as

11~ - 11(11~' 11) = -11~' 11
1
~ I tan «5 - D v 11!.1 1!. ,at x 3 = b(x1,x2) (15)

where the first term on the right hand side is the Coulomb sliding law, and tan «5 is the bed
friction angle whose value(s) ,depend on the nature of the particles, degree of packing, and
the contact surface. The remaining term on the right-hand side is the boundary drag term.
It should be noted that the above is compatible with the kinematic condition at the base (eq
13). When the basal surface agrees with the coordinate generating surface, 11 = §:<3> and
the kinematic condition at the base eq 13 reduces to

V<3> = 0

Equation 15 at the base reduces to

[
tan «5 ]

t<32> = -V<2> I 1!. I t<3 3> + Dv I 1!. I .

(16)

(17)

In view of the experimental work (Lang et al. 1989), which encompassed only the case
of the basal surface replicating the coordinate surface, the following discussion will focus on
this limiting case. Also,the scaling arguments will demonstrate the inconsequence of weak
curvature. For strong curvature in the lateral direction, the theory may be easily reduced to
channel flow equations.

Limiting cases of the governing equations

The governing equations that were presented are now nondimensionalized and averaged
over the depth and width, in order to provide a set of tractable equations. The nondi
mensionalization scheme allows for any number of characteristic length scales, that differs
from more conventional approaches. Becker (1976) presents a thorough treatment of this
method, commonly termed a "distorted model." However he prefers the more distinctive
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nomenclature of "Pythagorean method," as the Pythagoreans were motivated by the idea of
geometrical proportion being the basis of all things. By applying this method, inspectional
analysis indicates limiting forms of the equations that may be more easily treated. The ap
plication of this method has been accepted as the appropriate procedure when attempting to
model large-scale, geophysical phenomena. By adopting the concept of a "distorted model,"
consideration of more than one characteristic length scale is allowable. Such an approach is
commonly used and applied to large-scale, free-surface flow phenomena such as atmospheric
and oceanic motions. A specific example is the well-known "shallow water model." Scaling
provides the means to neglect small variations in topography that do not significantly affect
the lateral or longitudinal spread of the flowingmaterial. Curvature in the lateral direction
will be neglected, as discussed in a later section. For strong curvature in the lateral direction,
the equations are easily reduced to a channel flow model.

Also, assumptions are made to simplify the balance equations and boundary conditions.
Many of these result directly from the scaling arguments, and others are based on experience
with the physical problem at hand The nondimensionalized equations are then averaged
over the depth and width of the flow. This is a classical approximation method, commonly
applied in evaluating boundary layer flows. The result is a set of equations that represent a
balance between the average inertial and resistant forces for each position in the longitudinal
direction. Ordering of arguments allows further simplification. The need to consider the
detailed character of the flow is thus avoided, and sufficient information for an engineering
applIcation is obtained.

N ondimensionalization scheme

At this point, a scheme for nondimensionalization of the governing equations is presented.
This step of modeling geophysical phenomena is always to some extent a "leap of faith."
That is to say, choosing an appropriate model depends on experience, intuition and explicit
dynamic reasoning. The essential dynamic character of the geophysical system must be
retained but the validity of the model is examined after the fact.

Although the depth, length and width of an avalanche varies spatially and temporally, it
is assumed that characteristic values.ei may be sensibly chosen such that

(18)

(20)

where the Xi are the nondimensional lengths. The concept of an avalanche as a gravity
current suggests the following representation,

.e
i

[ 1] 1/2V<i> = £1 g.e 1!<i> = ViV<i> (19)

The above may be interpreted with respect to the fluid dynamic concept of "head" or the
free fall of a mass point in a gravity field through a given distance, although the length scale
may differ. This leads to an expression for time as

_ [.e1]1/2
t=Tt= Q t

As the Froude number is the governing parameter for the problem under consideration, the
stresses are scaled according to a hydrostatic relationship,
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3 . - -
= Po g.c SIn (0 t<i j> , i=/-j

(21)

(22)



where the null subscript denotes a characteristic value for the quantity under consideration,
while

sin (0 = cos (0 tan 8 (23)

The expression for sin (0 is a logical choice, as both the driving force and the resistance are
represented in eq 23, which both influence the order of magnitude of the resultant shear
stresses. The angle ( may also be characterized as

(24)

Also, the following definitions are applied:

£1
JC= 

R

(25)

(26)

In order to evaluate the basal boundary conditions the drag coefficient D1) is defined in
terms ofthe Voellmy coefficient tv , which is traditionally applied to flowing snow, as follows;

-n _ pO
L/1) -

tv
(27)

tv has the units of m/s2 such that it is a natural choice to scale it with the gravitational
constant such that w is related to the dimensionless form ro by

Depth and width averaging

tv = Oro (28)

V\Then a functional form of solution to a set of governing equations cannot be found, (i.e.
a solution that satisfies the equations identically at each point in space and time and that
approaches the appropriate boundary values) it may be advantageous to try and satisfy the
equations on the average, if the geometry of the problem allows for this approach to result in
a meaningful solution. If the equations may be integrated with respect to x3 across the depth
of flow and with respect to x2 across the width of flow, the resulting equations will represent
a balance between the average inertial forces and resistant forces for each xl location. In
this manner, a velocity distribution may be obtained that satisfies this averaged balance of
forces but that does not satisfy the balance at each point across the height and width of the
flowing mass.

This method is a classical approximation method that is widely used in examining bound
ary layer behavior, and was first introduced by von Karman (1921) and was further improved
by PoWhausen (1921). The results that are obtained from such an approximation are found
to be reasonably accurate in many instances. By acknowledging that V<l> and V<2> are con
tinuous on the interval [0, J], the first mean value theorem of calculus ascertains the existence
of a point g:J contained in the open interval (0,1) such that
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i 1
- -3

o V<i> dx

(29)

and furthermore, it may be assumed that

i
1

- -3-3o V<i> x dx

= (30)

where the notation V<i> implies the "depth-averaged" value of V<i> and f - 0 = h, the
nondimensional flow height. The latter equation is exact if the velocity profile over the depth
of the flow is uniform.

Let

E31E32 '\23 = 0(E51)

and retain only terms of O( E3 1) . The depth-averaged velocity squared is

I1 h
---- -2-3
V

2
<1> = h 0 v <l>dx

where the Boussinesq momentum coefficient will be taken to be near unity such that

~~=2
V <1> - V<l>

(31)

(32)

(33)

To be realistic, the Boussinesq coefficient is greater than one, but this approximation is
sufficient when the velocity profile is blunt. For a power law velocity distribution (see,
for example, Burgers 1924) that typifies a pure Newtonian turbulent fluid, the Boussinesq
momentum coefficient is 1.05 (Savage 1989b). The normal stress at the bed is then

h [ a( =2 ]= --- cos( + JC a-1V<l> .
cos (0 x

(34)

The use of an "earth pressure coefficient" is employed, such that the normal stresses
parallel and perpendicular to the path may be equated by employing an earth pressure
coefficient kactpass

(35)

kactpass has a value of k act or k pass , determined by the spatial evolution of the pile as either
elongation (active case) or contraction (passive case) with respect to the flow direction Xl.

From a standard Mohr's circle interpretation, it may be shown that
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} = 2 [1 =+= VI - (1 + tan2 8) cos2 ¢] /cos2 ¢- 1,
k pass

(36)



It is also assumed that

(37)

and

(38)

Also

(39)

The integrand [<21> is neglected by ordering >'21 E32« 0 (E1 2), as this shear stress
would only be locally effective in the case of confined narrow channel flows. It has been shown
(Savage 1989 and Lang 1988) that sidewall shearing may be incorporated, if necessary, as an
effective friction.

Also

(40)

and assume that

(41)

By neglecting the [<1 2> integrand, the lateral pressure gradient may be integrated as

(42)

based on the value of the £<33> stress component. An approximation for the [<3 2> stress
may be made from eq 42 from relating the shear to normal stress such that

h {- -2 [(. a-) 1-12
]}- 3 v<2>h "" (-2 Vr t<3 2>dx ~ 1_ I>. S cos( + K a-1 v<l> tanS + h - - .Jo 2 1Z. 32 cos (0 tan x E32 W

(43)

The nondimensionalized depth-averaged equations now may be further simplified by
width averaging. By defining the (nondimensional) half-width of the pile as

-1 -bm = bm (x , t) (44)

and assuming that the pile of granulate retains a parabolic shape in the Xl plane, the height
. may be expressed as

(45)
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where ho ( Xl, t) is the centerline depth (refer to Figure 1). This assumption is fully supported
by the experimental results discussed in Lang et al., 1989. Although natural avalanches do
not retain such perfect symmetry due to uneven topography and particle size variations,
some degree of symmetry is usually observed in natural avalanche deposition and a parabolic
distribution is reasonably replicated.

x
3

1o(~ C2 )2)
........................:~_~ _ _ ;~.~..~ / - x

b

......................... .. .
..........

( -1 -)-bm x , t o (
1 bm X ,t)

Figure 1: Approximation of pile shape in the xl plane

Assuming parabolic symmetry of the pile implies that 11<2>, the nondimensional depth
averaged lateral pile velocity, varies linearly with respect to x2 as in Figure 2 such that

-b

(46)

Figure 2: Lateral pile velocity

Integrating the continuity eq 3 over the depth and half-width, applying Leibniz' rule, and
invoking the symmetry conditions in (45 and 46) gives

a ibn> -- a ibn> - . ae a ibn> "h,2
axl 0 hV<I> dx

2 + at 0 h dx
2 + J( E3 1 axl at 0 2 dx

2
= 0

Define a "width"-averaged depth h

(47)
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it, = b~ ibm "h, dx2 (48)

By assuming that the depth has a parabolic distribution in the xl = constant planes

.. 2 -
h = - ho (49)

3
Furthermore, a depth- and width-averaged velocity may be defined again by use of the mean
value theorem of calculus such that



- 1 l b
= -hd- 2V<l> = --- V<l> x

bmh °
Vlith these, continuity becomes

(50)

- - -2
~(hobmV<l» ~(hobm) ~K a( ~(hobm) - (51)
axl + at + 5 E3 1 axl at - 0

'Width-averaging of the momentum balance equations requires an approximation for the
norm of the velocity vector. By acknowledging that sidewise spreading contributes in a
neglible and fairly constant manner to the value of the depth-averaged velocity, one approx
imation to be considered is

(52)

Furthermore, let

A = E3 2 kactpass

B = K a(
ax l

C
a(

= K E3l ax l

Fl
1

=
E3 1 if:;

F2
1

=
E3 2 if:;

l b
hV<1>V<2> dx

2 ~ V<l> l b
hV<2> dx

2 (53)

where the last approximation is physically realistic, as the longitudinal velocity has been
assumed to have a blunt profile over depth and does not appear to vary over the width at
anyone transverse section. Applying the aforementioned definitions and approximations to
the momentum equation in the ~<2> direction eq 6, and by application of Leibniz' rule,
termwise integration from x3 = 0 to x3 = hand x2 = 0 to x2 = bm gives

2 (A. Cho) ( -2) bmh~ (-ho - +-- cos ( + BV<l> - -4";. V<2>
2 3 V<l>

)(1 - C;o) tanb (cos ( + BV~l> )

(54)

The above equation is easily obtained by simple integration by noting that
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By the same method the width-averaged momentum balance in the f"<l> direction is

3G a [2bmh~ cos( 8bmh~BV~1>] (1 4hoC) [ ; 1: .B-2 1:]
- 4b

m
h

o
axl 3 + 15 - - -5- cos., tanu + V<l> tanu

F-2 (3 c) ( 2hoC).
- lV<l> 2b

m
h

o
- + 1 + -5- sm(

aV<l> _ OV<l> 2Cho aV<l>
= ----ar- + V<l> axl + -5-----ar-

dV<l>
- dt (56)
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Equations 51,56, and 54 comprise a complete boundary value problem for the free surface
flow of a cohesionless granulate down an open terrain of variable curvature in the longitudinal
direction. The requirement of pile symmetry has been imposed, which is satisfied by the
experiments in Lang et al. (1989), that meet the criteria of being friction-governed flows.

NUMERICAL SOLUTIONS AND COMPARISON TO EXPERI1\1ENTS

Because a closed form solution is not available for the system of equations which was
outlined, a numerical solution must be sought. Savage and Hutter (1989) show that a La
grangian formulation is the natural choice for this system of equations in order to determine
the position of the granulate surface through time. With this method, the boundaries of
the finite difference grid are convected with the depth- and width-averaged velocities of the
granular material.

Two different models are developed. First;' the boundary drag term is neglected and
predictions are based solely on modelling the material with the Coulomb friction law. Then,
it is demonstrated that a flow transition regime exists where the boundary drag term must
be included in the model in order to predict the position of the pile through time, and more
specifically, the final runout zone position. An artificial viscosity term JLa2ujax2 is added to
the equation of motion in order to smooth the solution.

Unconstrained Coulomb flow model with constant bed friction

New the depth- and width-averaged balance equations are solved. In addition to pre
dicting the length, height and longitudinal velocity through time, the sidewise spreading and
rate of sidewise spreading may be determined. The results from channel flow models (Lang
1988) are used as a guideline. A first approximation is applied, where it is assumed that



the boundary drag term may be neglected, and that {; remains constant through the length
of the pile. This provides the simplest set of width-averaged equations. For this system of
equations, the condition is applied that C < < 1. The depth- and width-averaged equations
as presented are then simplified. For comparison with simple laboratory findings a constant
bed friction angle provides good results. This model was tested against the experimental
results presented in Lang et al 1989. The numerical model and laboratory results show rea
sonable agreement. For example, experiment DA029 was released at an initiation zone angle
of 35°. DA029 consisted of 20.0 kg of 2- to 3- mm quartz particles, reaching a maximum
velocity of 3.6 mls at 0.9 s. Figure 3 shows the experimental values of velocity and position
for the leading and trailing edges through time as compared with the theoretical predictions.
The leading edge is the point on the x2 = 0 axis that travels the farthest, and the trailing
edge is the point on the x2 = 0 axis that travels the least amount of distance through time.
Due to the method of photography (see Lang et al 1989), a nondimensional time error of
0.52 may be incurred in deter~ining the initial frame, which may result in some of the offset.
Nevertheless, the theory predicts the general characteristics of the longitudinal progress of
the granular mass, and the final position of the forward edge in the runout zone is accurately
predicted. The prediction of the position and velocity of the leading edge of an avalanche
is the critical information required to calculate the impact pressure on a structure and to
motivate zoning restrictions.
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Figure 3: Theoretical predictions and experimental values of nondimensional position and
velocity of the leading and trailing edge as a function of nondimensional time for experiment
DA029

In Figure 4. the progression of the width and height at selected time increments is pre
sented. The time increments were chosen to correspond with frame times. The left hand side
of the figure represents the progression of the half width of the model and experiment (see
Lang et al 1989) at selected time increments, and the right hand side is the predicted depth
profile through time. Due to limited space in the laboratory, it was not possible to record
the height of the pile through time, but the general features are reasonably reproduced by
the theory; that is, the pile collapses rapidly, elongates and flattens to a maximum prior to
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encountering the runout zone. Then as the forward portion of the pile stops, the trailing
edge retains momentum and piles up over the static portion. When the angle of repose is
exceeded, the pile relaxes back to the internal angle of friction, and the tail comes to rest
at some angle less than the angle of repose (Fig. 4). The maximum final (nondimensional)
pile height was measured to be 0.21, and the model predicts 0.23. The model overestimates
the (dimensional) lateral spread of the pile, by approximately 9%, and the overestimation of
the lateral spread causes the underestimation of the pile length through time, particularly in
the runout zone. The pile is predicted to spread more rapidly in the lateral direction in the
initiation zone.

For experiments that were conducted at an initial bed angle (or starting zone angle) of
35°, the constant bed friction angle model is a good predictor. For laboratory simulations
conducted with greater starting zone angles, the model greatly overpredicts the final position
of the granulate mass in the runout zone. For example, experiments DA025 and DA033 were
also modeled with the constant bed friction model. Both of these experiments were released
at an initiation angle of 45°. For DA025, 20.0 kg of 2- to 3- mm quartz particles were used.
The resulting predictions of position and velocity through time show that the final positions
of the leading edge and the tail are greatly overpredicted. Position and velocity profiles for
DA033 18.4 kg of 2-3 mm marmOT" show also that the toe and tail positions are overpredicted .
with this model (for details, see Lang 1992).

This result agrees with problems encountered when attempting to model natural snow
avalanches. Gubler (1987) discusses the problem of modeling higher speed avalanches with
traditional avalanche models. The friction coefficients must be increased by a factor of 2, in
general, in order to force the avalanche to come to rest in the appropriate position in the
runout zone.

Because this numerical model accurately predicts the experiments conducted at 35° which
results in lower velocities and accelerations than for larger angles, it is possible that a tran
sition in flow regime occurs in the boundary layer where the boundary drag force becomes
non-negligible at higher velocities. Its inclusion in the numerical model is presented in the
following section. Gubler (1987) discusses a similar flow regime transition for natural snow
avalanches from flexible sliding body to partial fluidization. Furthermore, Buser and Frutiger
(1980) found that the inclusion of both sliding bed friction and boundary drag underpredict
velocities for very large natural snow avalanches. This result may also be an indication of
flow transition behavior, in the sense that an avalanche may initiate in the flexible sliding
body type flow and reach a transitive velocity where partial fluidization occurs. If the ad
ditional resistance due to boundary drag is applied throughout the flow time, the theory
would underpredict velocities. However, if a critical velocity could be determined that would
predict the transition, and hence the appropriate application of an additional boundary drag
term, perhaps this problem could be circumvented.

Unconstrained Coulomb flow with boundary drag term

It was mentioned in the previous discussion that the constant bed friction angle model
becomes a poor predictor for initiation zone angles greater that 35°. At this point it seems
sensible to attempt to model the additional resistance to flow by inClusion of the boundary
drag term. Again, average values are used to avoid the possibility of the pile height approach
ing zero. Also, the depth- and width-averaged drag term includes the width of the pile in the
denominator, that is zero at the midpile. Therefore, the following average of the drag term
is included:
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As an example, experiment DA025 was modeled with the inclusion of the drag term, and
results are presented in Figures 5 and 6. DA025 was conducted at an initiation angle of 45°
and 20.0 kg of 2-3 mm quartz particles were used. Figure 5 depicts the resulting predictions
of position and velocity through time. The final position of the leading edge is somewhat
underpredicted, but the general motion of the pile through time is well mirrored. The model
does not allow the maximum leading edge velocity to be attained. It may be restated that
ideally, the boundary drag term should perhaps be applied only when a critical velocity (or
critical Froude number) is attained.
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Figure 5: Theoretical predictions and experimental values of nondimensional position and
velocity of the leading and trailing edge as a function of nondimensional time for experiment
DA025

As shown in Figure 5, the initial spread of the pile is overpredicted, but in the runout zone,
the shape is quite accurately replicated. The pile is predicted to be shorter in the longitudinal
direction and slightly wider than the actual pile shape. The final maximum (nondimensional)
pile height is extremely accurate: the theory predicted 0.205 and the experimental result was
0.206.
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CONCLUSIONS AND REMARKS

Governing equations and closure relations were proposed to represent the flow of a co
hesionless granular medium on any given topography. The goal was to develop an easily
applied model to predict the bulk flow characteristics of the mass of granulate. Indeed, the
anticipated result of every avalanche model is to predict the final runout zone position of
the mass and the possible impact pressures on structures in the path of an avalanche. A
purely mechanical theory was proposed and the granular mass was treated as a continuum.
The balance equations in terms of physical components in an adaptable and appropriate
coordinate system were derived. A constitutive assumption was justified by considering the
different flow regimes in question, and the experimental results from Lang et al. (1989), and
other investigations.

The governing equations were nondimensionalized and averaged over the depth and width,
in oider to provide a set of tractable equations. The nondimensionalization scheme allows for
any number of characteristic length scales, which differs from more conventional approaches.
By applying this method, inspectional analysis indicates limiting forms of the equations
that may be more easily treated. The application of this method has been accepted as
the appropriate procedure when attempting to model large scale, geophysical phenomena.
Assumptions were made to simplify the balance equations and boundary conditions, which
resulted directly from the scaling arguments or were based on experience with the physical
problem at hand. Changes in the volume fraction of the granulate and variations in topog
raphy in the lateral direction were neglected. The nondimensionalized equations were then
averaged over the depth and width of the flow, a classical approximation method, commonly
applied in evaluating boundary layer flows resulting in a set of equations which represent a
balance between the average inertial and resistant forces for each position in the longitudi
nal direction. With this method, no information can be provided to determine the detailed
character of the flow, but sufficient information for an engineering application is obtained.

A Lagrangian discretization scheme was applied in order to numerically evaluate the
magnitude of velocity, and predict the spatial evolution of the granular pile through time.
This type of analysis allows for the particulate to be advected with the finite difference grid,
and was shown by Savage and Hutter (1989) to be the appropriate choice for such a problem.

Two models were developed for the free surface flows. The first assumed a constant bed
friction angle, and neglected any boundary drag effects. This model proved to be adequate
in predicting the experiments discussed in Lang et al. (1989), which were conducted at bed
surface angles of 35°, but failed for larger values of initiation zone angles. The method of
photography incurred a nondimensional time error of 0.52 in determining the initial frame,
which may have resulted in some of the inaccuracy. Nevertheless, the theory accurately
predicts the general characteristics of the longitudinal progress of the granular mass, the
velocity with time, and the final position of the forward edge in the runout zone for the
35° experiments (e.g., DA029). The progression of the height and width at selected time
increments, corresponding with frame times, was also well reproduced by the theory. The
pile collapses rapidly, elongates and flattens to a maximum prior to encountering the runout
zone. Then as the forward portion of the pile stops, the trailing edge retains momentum
and piles up and over the static portion. When the angle of repose is exceeded (Fig. 4)
the tail reverts back to an angle equivalent to or less than the internal angle of friction.
The final angle (actual or predicted) depends on the amount of backwashing that occurs.
The maximum final (nondimensional) pile height was predicted to within 8%. The model
overestimates the lateral spread of the pile and this causes the underestimation of the pile
length through time, particularly in the runout zone. The pile is predicted to spread more
rapidly in the initiation zone. But the average flow procession of the pile is well predicted.

For laboratory simulations conducted with greater starting zone angles, the model that



neglects any flow resistance due to drag overpredicts the final position of the granulate mass
in the runout zone. This result agrees with problems encountered when attempting to model
natural snow avalanches. Attempting to model higher speed avalanches with a basic, or all
encompassing, avalanche model, and producing erroneous results is not a new or surprising
problem. Gubler (1987) discusses the problem of increasing friction coefficients by a factor of
2, in general, in order to force avalanche models to come to rest in the appropriate position
in the run-out zone, when attempting to model snow avalanches that attain higher velocities.

Since the first model breaks down for initiation zone angles greater that 35 0
, an attempt

was made to model the additional resistance to flow by inclusion of the boundary drag term.
Experiment DA025 was modeled with the inclusion of the boundary drag term, and results
were presented in Figures 5 and 6. This experiment was released at an initiation angle of
4·0o .

For DA025, the final position of the leading edge was underpredicted, but the general
motion of the pile through time is well mirrored. The model does not allow the maximum
leading edge velocity to be attained. It is not an unreasonable idea that the boundary drag
term should perhaps be applied only when a critical velocity (or critical Froude number) is
attained. Also, the initial spread of the pile was overpredicted, but in the runout zone, the
shape is quite accurately replicated. The pile is predicted to be shorter in the longitudinal
direction and slightly wider than the actual pile shape. The final maximum (nondimen
sional) pile height was accurately predicted, with a theoretical value of 0.205 compared to
the experimental result of 0.206.

In general, the numerical models and experiments show good agreement and provide
valuable information. These results are justification for the characterization of the flow, and
persuance of averaged quantities. The resulting predictions of geometry and velocity through
time are encouraging. However, some subjectivity is still required to determine appropriate
constitutive parameters and it is unknown if the models can represent naturally occurring
events.

Future work should include testing these. models against naturally occurring events, in
particular, snow avalanches, since experimental data are available (Gubler, 1987). This would
be no minor task, considering one would have to attempt to determine in-situ properties of
the snowpack Also, the model presented was developed to include curvature variations of the
slide path in the lateral direction. If one were to completely test the model against a naturally
occurring event, it would have to be determined how important the topographical variations
in the lateral direction are in affecting the final runout position. Certainly, constraining the
flow in a channel prohibits dilatation to some degree. This would entail more experimental
work on simple materials. It may be sufficient to characterize a given natural topography
by simply combining the channel flow and unconstrained flow models, and specifying the
channel width as a function of longitudinal direction, and the position(s) where channel flow
is no longer appropriate. Asymmetry in the spreading direction mayor may not be a decisive
factor in determining the final runout position of the flow.

Also, in order to compare the model to snow avalanches one must remain cognizant of
the fact that the cohesive nature of snow has been neglected. This omission is probably most
impractical for modeling the initiation of the avalanche and the final stages of compaction in
the runout zone, but it is unknown if neglecting cohesion plays a significant role in determining
the salient features of the flow. The same statement may be made concerning particle size
distribution. It is sufficient to say that some progress has been made in modeling granular
flows, but efforts should continue to resolve these and many other issues.
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curvilinear coordinates
natural basis for curvilinear system
metric of the space
orthonormal basis for curvilinear system
underline denotes first order tensor (vector)
double underline denotes second order tensor
angle defining longitudinal variations from the horizontal
physical component of :ll.

mass density

del operator, operating on the argument indicated by arrow
physical component of ~, for the stress tensor with the subscripts implying on the i surface
and in the j direction
function defining free surface
function defining bed surface
unit normal vector
velocity vector
body force vector
acceleration vector
Cauchy stress tensor
bed friction angle
internal friction angle
boundary drag coefficient
i th characteristic length scale
acceleration due to gravity
characteristic time scale
overbar denotes nondimensional quantity
double overbar denotes nondimensional, depth-averaged quantity
tilde denotes nondimensional, depth- and width-averaged quantity
ratio of £i (i th characteristic length scale) to £j (jth characteristic
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