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New class of snow cover stability models are suggested. The base of such models are
determined models of snow cover mechanical equilibrium and parameters of the models are
stochastic functions. As an example of this class consider the model that is used for evaluation
snowstorm snow stability.

As a determined model was chosen simplified Boginsky's model [1] in which comparison
tensile stress with tensile strength is used for evaluation snow cover stability. For practical using
the model was simplified by Boginsky [2] additionally and instead of tensile stress was used snow
mass of instability zone and instead of tensile strength - value of critical mass. The algorithm of
the modelling is described briefly below.

The profile of the slope is divided on segments with equal length in projection on horizontal
plane.

For each segment inclination uk and length ~lk are calculated.
For each segment snow thickness hk, snow density Pk and shear strength ck are set.
For each segment critical snow thickness is calculated with approximate formula (1).

hk* = ck/Pkg(sinuk - fcosuk) (1)

For each segment snow thickness hk is compared with critical one hk*.
Zones in profile where snow thickness more then critical one are selected.
Snow masses in selected zones are calculated.
Calculated snow masses M are compared with critical one M* for each zone.
It is considered, that snow is in unstable conditions in zones where snow masses more then

critical one.
In accordance with [2] a friction coefficient f and a critical mass M* are effective constants

which are determined by inverse calculation with data on avalanche releases. .
There is a big problem with data of snow parameters for each segment. Usually these

parameters are determined in few points of avalanche starting zone only. As our studies showed
[6], two tens of measurements are enough usually for reliable definition of average characteristics
only. Spatial changeableness of these parameters is doing interpolation between points of
measurements senseless. Statistical modelling method for obtaining of input data for determined

. models are suggested.
For realization above mentioned algorithm, the parameters' distribution along profile

(obtaining input data for each segment) was simulated as multidimensional normal vector l;. Our
studies [3,6] showed that distribution of used parameters are very close to normal. Such
distribution is determined by vector of mathematical expectations m and covariance matrix R. It

. is very easy to get vector with such distribution by linear transformation (2) of vector 11 which
components are random values with mathematical expectations equal zero and dispersions equal
one.

l; = All + m (2)

Coefficients of transformation matrix are determined with a special procedure [4] on base of
covariance coefficients. For case with constant mathematical expectation and dispersion
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(stationary process), distances between segments I and autocorrelation function r(l)determine
covariance coefficients entirely (3).

R· = cr2r(I··)IJ IJ

So if we have mathematical expectations, dispersions and autocorrelation functions above
mentioned parameters we can produce realizations theirs distributions along profile by Monte
Carlo method. When realizations have been got enough, evaluations of two kinds of probabilities

.PI and Pk are calculated as ratios of definite kind outcomes numbers to total outcomes number.
PI is probability of unstable zone formation in a slope with a given profile (probability of

avalanche occurrence) .
Pk is probability of that the snow cover in segment k are in zone of initial displacement.
Autocorrelation functions of snowstorm snow thickness rh(l), density rp(l) and shear strength

rc(l) were got on base more then 10000 measurements in Khibini Mountains on slopes with
inclinations 25-30 degrees. Autocorrelation functions have the same view and were approximated
by the next expressions·:

rh(x)=exp[-0.09x1.50]

rp(x)=exp[-0.I5xo.83]

rc(x)=exp[-0.I6x l.02]

Since value of critical mass for determined model was obtained by inverse calculation for one
avalanche site only [4], in stochastic model it is chosen by Brier's [5] criteria minimization (7).

2 N

E = lIN L L (Pi" - Ei · ) (7)
. I' I 1I 1IJ= ,=

Where j=I,2 - numbers of classes, j=1 - avalanche situations, j=2 - non-avalanche situations, i
- number of situation, Pij - calculated probability of that i-situation relate to j-c1ass, E ij - have a
value 1 or 0 depending on relate or no i-situation to j-c1ass, N -.total number of situations

In practice, if we have a big avalanche starting zone, calculations for a few profiles could be
make. The maps of unstable snow cover conditions received by results of such calculations (fig. 1)
give rough visual picture of avalanche dangerous zones that are useful for using at artificial
avalanche releasing.
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Fig. 1. An example of definition of places
with different Pk probabilities. Equal
probability lines have been outlined on
the map of avalanche starting zones.

• Formulas (4) - (6) arc not autocorrelation functions for rcal proccss f(x) (wc havc onc·dimcnsionalmodel). but
x+al2

for process cp(x) = lla Jf(x) dx •where a =Sm.
x-a/2



Advantage of such modelling are adequateness of the results to input data. Uncertainty in
initial information is reflected in probabilistic conclusion about snow stability. Evidently it is no
sense to use complicated determined models if it is impossible to supply its by required data. With
using of statistical modelling it is easy to explain differences in quality of avalanche forecasts
which were made in different geographical conditions. For example, it is enough to consider
spatial autocorrelation function of fresh snow shear strength in the Khibini Mountains (Arctic
region) and Tien Shan (Middle Asia) (fig.2) for understanding these differences.
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Fig.2. Spatial autocorrelation function offresh snow shear strength:
1 - for the Khibini Mountains, 2 - for Tien Shan.

Some numerical experiments were carried out for study of parameters h, p and c variability
influence on zone instability formation. The results of these experiments are presented on fig.3-5.
The real profile with average inclination 34 degrees and horizontal projection 170m and ideal
smooth one with such projection's length with inclination 40 degrees were chosen for
experiments.

In first experiment dependence P I from Cy - coefficients of variability of h, 0, c parameters
were studied. At modelling mean values ha, Pa' ca were constant, dispersions of two from three
parameters were constant too and third was changed. Obviously, the concrete dependence are
determined by profile, values ha , Pa' ca ' (Jh , (Jp , (Jc ' f, M* . On the whole, it should be noted,

that values P I rise with Cy rising up to definite angle of slope, but at big angles values P I drop at
Cy rising (fig.3). So gentle slopes non-avalanche dangerous in regions with low spatial variability
snow properties can be avalanche dangerous in regions with high variability of these properties.

The length of slope influence on PI are shown on fig.4. Probability PI strongly depends on
length of slope. It is easy to see that minimum length of slope exists on which avalanche release is
possible. Avalanche formation is impossible on the more short slope. The minimum length is
determined by set of values ha ' Pa ' ca ' (Jh , (Jp , (Jc ' f , M*. This conclusion have important

practical application. It is possible to calculate maximum permissible length of slope between
terraces at antiavalanche terracing on a base of long-term measurements h, P, c parameters in
given geographical region.

The influence of slope longitudinal curvature on probability P I is shown on fig.5. From fig.5 it
could be seen· the influence of average slope inclination on probability P I too. At small average
angles of slope the longitudinal curvature of profile increases the probability avalanche release PI
considerably. The probability of instability zones formation on convex and concave slopes of
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Fig.3. An example of dependence PI from Cv of
h, p, c - parameters for real profile with average
inclination 340 (curves 1,2,3 respectively) and
for ideal even profile with inclination 40°
(curves 4,5,6 respectively).

Fig.4. An example of slope length influence
on avalanche release probability P I. The

slope is smooth and has an inclination of 40°·
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Fig.5. The influence oflongitude profile curvature on formation of snowstorm
snow instability zones. Numbers near the profiles are probabilities PI'
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identical curvature and with identical average inclination are approximately equal. However on
convex slopes the maximal values Pk , corresponded to places of the most frequent avalanche
releasing, are on their bottom parts and on concave - on top ones.

The considered method of avalanche danger diagnostic with statistical modelling is, in point of
fact, detailed large scale avalanche forecast with range of forecast period equal zero. If to use as
entrance parameters of the method forecasted values of snow parameters or extrapolate in time
the results of diagnostic it is easily to transform the method in forecast in time.

Required range of forecast period at enough developed system of antiavalanche measures, as
P.AIApatit" experience has shown, can be enough short, usually a few hours.

At present, besides that on the basis of statistical modelling the entirely formalized methods of
avalanche danger forecast can be developed, this approach can render the considerable help at
interpretation snow-avalanche information by means of the most modern determined numerical
models, lefts, however, acceptance of final decision about wording of forecast for experienced
forecaster.

REFERENCES

1. Boginsky AN. , Grigorian S.S. On snow cover equilibrium in mountain slopes. (In Russian)-
Data of glaciological studies., M., 1978, N 34, p.p. 101 - 107.

2. Boginsky AN. Unstability of natural ice and snow masses in mountain slopes. (In Russian)­
The resuts of science and technics, glaciology., M, 1980, v. 2, VINITI, 122 p.
3. Boginsky AN., Chernouss P.A Probability model of snow stability on mountain slopes. (In

Russian) - Data of glaciological studies., M., 1986, N 55, p.p. 53 - 61.
4. Yermakov S.M., Mickhailov G.A Statistical modeling. (In Russian), M., 1982, Nauka, 296 p.
5. Panovsky H.A, Brier G.W. Some applications of statistic to meteorology. Pennsilvania, 1958,
University Park, 209 p.
6. Chernouss P.A, Khristoyev Y.V. Accuracy evaluations of the data on snow thikness in

avalanche catchments. (In Russian) - Data of glaciological studies., M., 1986, N 55, p. p. 20 I ­
206.

345


	issw-1994-341
	issw-1994-342
	issw-1994-343
	issw-1994-344
	issw-1994-345

