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Abstract

An extreme value (Gumbel) distribution was
evaluated as a model of mCLximum avalanche
run-out distances in Southwest :t\10ntana. The
model is defined in terms of dimensionless ra
tios that are defined relative to an arbitrar
ily defined reference point. The development
and analysis of the statistical model was based
on data from surveys of twenty-four avalanche
paths. The technique bears promise as a user
friendly tool; however, the model is quite sen
sitive to measurement uncertainty. The signif
icance of this sensitivity depends on the defini
tion of the reference point. Therefore, the ref
erence point for this model was chosen to op
timize the models sensitivity to field measure
ments. Comparison of the model developed
here with models developed for other moun
tain ranges indicates that models developed
for one lllountain range cannot be used to ac
curately estimate maximum avalanche run-out
distances in other ranges until natural sources
of variation are better understood.

Introduction

The purpose of this research is to develop a
more user frienclly tool for estimating max-

ill1l1m avalanche run-out distances in South
west MOlltana. An approach used by Mc
Clung, :t\/1c11rs, and Schaerer [3J offers a rneans
of achieving this goal. This metlwd is essen
tially a stat.istical evaluation of historical av
alanche activity in any given mountain range.
Maximum run-out distances are estimated as
based on avalanche extremes that have oc
curred in the last "100 year" period. Mc
Clung and Mears [2J applied this approach to
mountain ranges in Norway, the Sierras, the
Colorado Rockies, the Canadian Rockies and
Coastal Alaska. They noted substantial dif
ferences in the results between these ranges.
These discrepancies may be due to natural
sources of variation such as differences in ter
rain features, and weather conditions. The
large majority of slide paths evaluated by Mc
Clung and :t\1ears were large, over 350 me
ters vertical drop. In this study we tested
the applicability of McClung's approach to
the mOlUltaiw, in Southwest :t\10ntana where
a large percentage of the slide paths are con
siderably smaller.

In a previous paper [4], we (liscll::iscd the
construction of a statistical model for ex
tremc avalanche run-out distances in South
west :t\10ntana. Here we repeat many of the
details on the construction process but go into
much more detail on the sensitivity of the
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Mears, and Schaerer [3] is based on the defini
tion of a dimensionless run-out ratio, which is
then used as the random variable of a prob
ability distribution. Before defining the di
mensionless run-out ratio, a reference point
must be selected along the avalanche path,
as shown in Figure 1. McClung, Mears, and
Schaerer define their reference ,/3, point as the
first point along the avalanche path that di
minishes to a specified local slope angle, ef3.

This definition can be applied fairly consis
tcntly if the paths are continuously concave,
but if the paths are interrupted by ledges or
sloping benches then the referellce point lnay
change position as a function of the averaging
or smoothillg techllique used to define local
slope allgles. Some of these ledges are so small
that they presumably have an insignificant in
fiucnce on the avalanche run-out distance so
that they can be modeled by smoothing out
the bump and choosing the next lower posi
tion which meets the definition of the reference
point. If the slope is interrupted by a larger
bench with a shallow slope and the reference
point is positioned on this bench, the prob
abilistic model, developed using continuously
concave slopes, appears to lead to an under
estimation of the expected maximum nUl-out
distance [1].

The run-out ratio is defined as the horizon
tal distmlce, 6x , between the /3 point and the
cxtrcille rUll-out position divided by the hori
zontal distallce, xf3 , between the /3 point and
thc starting position of the avalanche. In sym
bolic tenus, we havc

XJ3 '.'

starting point

e= local slope angle

:.

model to errors and uncertainties.

Maximum avalanche run-out distances were
measured on twenty-four avalanche paths in
the Madison and Gallatin Ranges of Southwest
Montana. Slope and distance measurements
were taken with an inclinometer and tape mea
sure. Maximum run-out distances were de
termined using records of past avalanches in
terms of tree destruction and other vegeta
tion damage. In several cases the return pe
l'iod of different avalanche run-out distances
was clearly displayed as a series of steps in
tree ages. In these cases only younger trees
grew in the run-out zones of the more frequcnt
avalanches while slightly older trees grew in
the extended run-out zones of the larger hut
less frequent avalanches.

Since avalanche run-out distances are known
to have a probabilistic naturc, the data col
lected was used to construct a statistical model
of maximum run-out distances. The model is
based on the ratio of two distance parameters,
which can be easily determined from field mea
surements.

Figure 1: Parameters defined in terms of path
geometry

The statistical approach taken by NlcClung,

\Vhen we first began this study, we intellded
to simply extend or confirm the accmacy of
the statistical model used by McClung, Mears,
and Schaerer [3]; however, we are working with
smaller avalanches paths and hence had to
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slightly alter their model. McClung, Mears,
and Schaerer defined their {3 point where the
local slope angle, e, first diminished to ten
degrees, but out of the twenty-four avalanche
paths we surveyed, only five ran far enough
to reach a local slope angle of ten degrees. In
some cases, e did not diminish to ten degrees
for two or three hundred meters beyond the
end of the extreme run-out position; therefore,
we felt that a ten degree reference point had
no physical significance relative to our paths
and decided to search for a new definition for
the (J point.

To define the path profile, we surveyed the
avalanche paths by taking slope and distance
measurements every fifty meters in regions
where the slope was relatively constant. Vve
shortened our survey distance where the slope
was highly variable. As mentioned previously,
since local regions of the slope can display sig
nificant variability, the choice of the (J point
can be quite dependent on the averaging tech
nique that is applied. To simplify the averag
ing process and keep it as consistent as possi
ble, we decided to model each avalanche slope
using the least squares fit second degree poly
nomial. This approach also allowed us to eas
ily var~ the definition of e/3 and solve for new
(J points on each avalanche path.

If we were to develop a probabilistic model
with run-out ratios for all avalanches, we
might expect a normal distribution to work
quite well; however, since we are modeling
only those avalanches we would expect to lie in
the extreme tail of the normal distribution, we
use an extreme value distribution, which,in a
sense, models the right hand tail of the nor
mal distribution. Here we are working with
the extreme value (Gumbel) distribution ini
tially used by McClung and Lied [IJ. In this
case, we have a probability density function of

the form:

j(l') = ~exp ( _ l' ~ U _ exp ( _ l' ~ u) )

(2)
Since this distribution is not symmetric, the

location parameter (u) and the scale parame
ter (b) do not represent the mean and stan
dard deviation. Instead, the mean is of the
form u + ,b , where, = 0.57721 (Euler's con
stant), and the standard deviation is of the
form rrb/ JG. Now if we let 1'1' represent the
pth quantile, we have a cumulative distribu
tion function of the form:

P(l' :::; 1'1') = J:: j(z)clz (3)

= exp ( -exp ( _ 1'1' ~ u) } 4)

P(l' :::; '''1') is the non-exceedance probability
divided by one hundred (i.e. 0:::; P :::; 1).

To obtain estimates for the parameters us

ing our data, w~ let 1'1' = (~: );' then rewrite

Equation 4 as

(6X) u - bln(-ln(Pi)) (5)
x/3 i

= u + bYp , (6)

where Yp , = -In(-In(Pi )) is the called the
reduced variate. Once we have defined appro
priate values of Pi for each run-out ratio, we
can solve for the parameters u and b using lin
ear regression.

To define non-exceedance probabilities cor
responding to each run-out ratio, we first ar
range the N run-out ratios in increasing order
so that

( ~; ) 1 < (~; ) I :::; (~; ) N

For the corresponding non-exceedance proba
bilities, we use the empirical form obtained by
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Figure 2: Regression line for extreme value
dist.ribution

95 % confidence limits on mean
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far exceeded the run-out ratios of the other
paths alld was elirllinated.

McClung and Mears [2], 1
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Statistical results -0.2

Second degree polynomials workcd reasonably
well as models of the twenty-four avalanche
paths we surveyed. All but two yieldcd fits
with standard deviatiolls less than six meters
where the median was approximately 3.7 me
ters. Based on our data, we chose to defille
our reference point for ef3 = 18 degrces. vVe
did not dcvelop a finn physical basis for this
definition, but when highcr valucs arc used for
ef3 , the model is much more sensitive to mea
surement errors. Using our data and dcfinition
of ef3 , we have the statistics shown in Table 1.

Variable Mean Standard Rangc
Deviation

H (m.) 248 123 68 - 553
es (deg.) 38 4.0 31 - 46
er (deg.) 14.5 6.1 1.5 - 25
b.x (m.) 66 102 -87 - 340
xf3 (m.) 432 221 140 - 982

Table 1: Descriptivc Statistics

Using regression on the lillcarizcd form of
our extreme value distribution, we obtain the
paramcters and corresponding 95% confidellce
limits on the mean shown in Figure 2. Sillce
we have less than thirty data i)oints, we uscd
the t distribution to calculate our confidcllce
limits as discussed by Walpole and Myers [7,
§8.3].

Though twenty-five avalanche pat.hs werc
surveyed, one pat.h, which had a large !Jcllch
midway and was t.herefore inconsistent. with
the other paths, yielded a run-out ratio which

Since we expect a large range of weather
patterlls to .occur ovcr a 100 year period,
we expect patterns which produce extreme
avalanches to occur somewhere in that time
frame. By measuring ma..ximum avalanche
rUll-out distances, based on vegetation dam
age in the last "100" years, we reduce the large
variations in avalanche run-out distances due
to year to year weather patterns. At the same
time, without completing a detailed tree ring
analysis at each path, we can not be certain
of the true time period that the vegetation
damage has recorded since the recovery rate
for vegetation (trees) varies significantly be
tween north and south aspects and also be
tween higher and lower altitudes.

Of the avalanches recorded by vegetation
damage, if we assume we have the maximum
run-out distances for the last 100 years, then
most likely we are actually working with ava
lallche run-out distances that have return peri
ods greater than 100 years. For example, if we
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consider avalanches that have a return period
of 1000 years, then for each path, based on
an exponential distribution, there is roughly a
9.5 percent chance that we are working with
a run-out distance that has a return period of
1000 years. Substituting into the binomial dis
tribution, we estimate that approximately 2 of
the 24 surveyed have a return period of 1000
years, as long as their vegetation records have
not been erased by more extreme avalanchcs.
Similarly, we would expect approximately 7 of
the 24 surveyed to have a return pcriod of 300
years. Though these occurrences may appear
to be a problem at first, most likely they are
not, since we would also expect similar occur
rences in the next 100 years. Also, sillce these
occurrences are included in our data, t.hey are
also factored into our model. .

Avalanche paths have variations in flow re
sistance, path geometry, aspect, vertical drop,
avalanche volume, etc. Vvhen wc prcparc
to use thc statistical model wc must. verify
that the data set used to build the statis
tical model contained a sufficient number of
avalanche paths with similar characteristics;
otherwise the model may be biased and yield
poor estimations of run-out distallces. For
example, if our model is developed primarily
from confii1ed avalanche pat.hs, we would not
feel comfortable using our model t.o estimate
run-out distances for un-confined avalanches.
Obviously to develop a more accurate llioclel,
it is necessary to work from a datahase of
similar avalanche paths. On the other haml,
to build a very general though conservat.ive
model, the data set must include a sufficient
Immber of avalanche paths which bear all of
the significant characteristics. With this ob
servation in mind, we see that the data col
lectors must be clear about which sources of
variation have been included in the develop
ment of the model.

Unfortunately data contains not only varia-

tion due to path characteristics, but also pos
sibly human errors and inherently variations
due to measurement uncertainties. These er
rors and uncertainties should first be mini
mized through rigorous surveying techniques,
but for uncertainties that cannot be easily re
moved, the objective is to choose a model that
minimizes the uncertainty in the estimations
it provides. To do this we must obtain a feel
for the effect each type of measurement uncer
tainty might have on our set of possible mod
els. To determine a model~s sensitivity to t.hese
uricertaint.ies we can use a Monte Carlo sirnula
tiOll [5]. In essence, we superimpose normally
dist.ributed noise (errors) on our data and then
record the resulting distribution of model pa
rameters. From the distribution of model pa- .
rameters, we can determine confidence limits
relative to our measurement uncertainties.

As mentioned earlier, to survey the ava
lanche paths we first estimate the extreme
limit. of the starting zone or run-ou t zone,
whichever is more cOllveniellt. Vle then record
point.s along the avalanche path in terms of po
lar coordinates. If the slope appears to be rel
at.ively constant we takc steps with distances
(radii) as large as fifty meters, and where there
are large variations in slope we shorten the
recording distance accordingly. We measure
the distance with a fifty-meter tape and slope
wit.h an inclinometer (Brunton compass). This
process is continued until we reach our esti
mate of the opposite extreme end of the av
alanche path. Most of the paths have rocky
cliff bands at the t.op which provide fairly def
inite start.ing points, but others begin in large
meadows or on convex br'eak-over points which
leave thc starting points open to judgement.
Thc extreme run-out positions were usually
better defined, but there were still cases where
there was a choice between following a small
off-shoot or stopping at the end of what ap
peared to be the bulk flow. Thus based on
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our measuring technique, we have the follow
ing four sources of uncertainty in our measure
ments:

1. estimation of starting zone position

2. measurement of distance

3. measurement of slope

measurement errors we would probably use the
upper 95% confidence limit due to measure
ment uncertainties and if we ignored uncer
tainty due to other factors, we could then state
that we expect 95% of all extreme avalanches
in the next 100 years to have a run-out ratio
less than 0.571.

lr------r-------'-=......----,

~o. 5

4. estimation of extreme run-out position

As mentioned above, to estimate the effect
each of these types of errors might have on
our model we have superimposed normally dis
t.ributed noise (errors) on top of the dat.a we
recorded. To do so, we have assumed the st.an
dard deviations list.ed in Table 2 for t.he respec
tive error distributions.

0.8

0.6

0.4

0.2

~::::P.:~~~:I:I~~~~~:~:::::~
;Iocutlun~ scule :

~'.~~ i~::~~ •
: 0.0627 ! 0.156 •

o 0.25 0.5

Runout Ratio

0.95 Quanlile

0.526
0.548
0.571

0.75 1

Standard
Source of Uncertainty Deviation
Starting Zone Position 3 m.
Distance (radii) 1 m.
Slope 1 deg.
Extreme Run-out Position 3 m.

Table 2: Assumed Errol' Standard Deviations

If we consider the uncertainty due to the
combined effect of these assumed errors we ob
tain the 95% confidence limits on the mean
cumulative distribution function shown in Fig
ure 3. These confidence limits imply that if we
were to repeat our measurements on the same
paths there is a 95% chance our new model
would lie within these limits. To obtain a feel
for how this uncertainty might affect the use
of our model we have also plotted the corre
sponding 0.95 quantile corresponding to the
95% non-exceedance probability. 13y using the
0.95 quantile, we are saying that we expect
95% of all extreme avalanches to stop before
they reach the corresponding run-ollt ratio.
Therefore to give ourselves an edge against

Figure 3: Confidence Limits for (}{3 = 18° due
to measurement uncertainties

Since we did not use McClung and Lied's
definition for (}{3 , we need to clarify why we
chose to (lefine (){3 = 18°. 'vVe had hoped to es
tablish a definition with a physical basis; how
ever, we discovered that the model becomes
much more sensitive to measurement errors as
we increase the angle 8{3. Thus we decided to
settle on a definition which, in a sense, opti
mizes the models sensitivity to these errors.

'vVe begin by reminding ourselves exactly
what we are trying to model. We would like
to model extreme run-out distances; t.herefore
O\ll' model should be sensitive to changes in
run-out distances. Once we fix a reference
point, we would like to detennine the extreme
run-out point relative to our reference point.
In OUl' geometrical model this distance is rep
resented by the parameter 6.x. Now suppose
we change 6.x by SOine fixed amount, J. To
consider the sensitivity of the run-out ratio to
the change, consider the following equation:
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To determine approximate 95% confidence
limits relative to each source of error, we mul
tiply the standard deviations in Table 3 by 2
and add or subtract from the mean parameter
value. However, at the moment, we are still
addressing the relationship between the defi
nitioll of (){3 and uncertainty In the model due
to slope and distance mca.<;urements. Hcre wc
will focus on slope measurcments since they
act as the clominant source of uncertainty. The
standanl deviations for model parameter dis
tributions due to slope measurement crrors are
shown as a function of B{3 in Figure 4.

We feel that the sensitivity of the model pa
ramctcrs to crrors in slope measurements is
primarily duc to our survey techniquc; since
we work our way along the avalanche path
measuring cach point relative to the previous
point, error tcncls to accumulate as we move
up thc slope. As (){3 increases, the referellce
point movcs up the slope where accumulated
errors can create significant changes in the lo
cal slope angle of our second degree polyno
mial model of the avalanche path. Changing
thc local slope angle leads to movement of the
refercncc point and conscquently affects the
geometric parameters 6.x and x{3 .

To clarify how this uncertainty affects our
model, we nced to takc our analysis one step

Table 3: Parameter Standard Deviations for
B{3 = 18°

our model due to possible measurement errors.
\iVith B{3 = 18°, we obtain the standard devia
tions on our parameter distributions showri in
Table 3.

Standard Deviation
Source of Error u b
Starting Position 0.000534 0.000724
Distance (radii) 0.00157 0.000805
Slope 0.0122 0.00715
Run-out Position 0.00254 0.00179

(9)

(10)

6.x

6.x 6.x
x{3 - x{3 +<.

---'-----,----'-- =
6.x
x{3

Hence this analysis also indicates B{3 should
be defined to place the reference point "near"
the end of the avalanche paths.

To determine the effect of errors in due to
our survey techniques is not quite as straight
forward. For this analysis, we used the Monte
Carlo technique discussed earlier. Here we fo
cus on the effect of t.he errors on the model
parameters (u and b), since these parameters
define our statistical model. To do this, we
take normally distributed errors with the stan
dard deviations given in Table 2 and superim
pose them on our recorded measurements. By
recording the distribution of model parmne
tel'S we can obtain a feel for the uncertainty in

6.x +0 _ 6.x
X{3 'X{3

---'--6..,----X---'-- =
x{3

As 6.x approaches zero the run-out ratio be
comes increasingly sensitive to changes in the
extreme run-out point. If 6.x becomes too
small then our run-out ratio becomes exceed
ingly sensitive to changes and consequently,
errors. Based on this analysis, (){3 should be
defined t~ place the reference point "near" the
end of the avalanche paths.

Now though we may define (}{3 to optimize
sensitivity to measurements of the cxtreme
run-out position, we would also like to mini
mize the uncertainty in the model due to other
measurements. We can apply the same tech
nique to errors in the determination in the
starting point that we used above. Let E., rep
resent an error in the determination of the
starting point. Then the following equation
illustrates the fact that as x{3 increases, errors
relative to the estimation of the starting point
become less significai1t.
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Figure 4: Standard deviations for model pa
rameters due to unccrtainty in slopc mcasurc
mcnts

Figurc 5: 95% confidence range on 0.95 quan
tile cstimatcs of cxtrcmc run-out points

further. If we wanted to usc this model to dc
fine an avalanche hazard zonc, wc would dcfinc
our hazard zone in tcrms of avalanchc run-out
ratios with acccptable probability lcvels. For
our example, wc havc choscn a 95% probabil
ity level, As mentioned prcviously, this implics
that over the ncxt 100 ycars, wc expect 95% of
all extremc avalanches to yield run-out ratios
less than thc run-out ratio calculatcd as thc
0.95 quantile from our modcL Now if wc turn
our attention to unccrtainty in our model duc
to measurement errors. If wc takc into account
the 95% confidence limits resulting solely from
possible slope mcasurcmcnt crrors, wc havc a
confidence range on our 0.95 quantile run-out
estimate as a function of 8(3, shown in Fig
ure 5.

To calculate thesc data points, wc t,ook 2
times the parameter standard dcviations thcn
added and subtractcd frorn thc mean parmn
eter values. This procedurc gavc us thc 95%
confidence limits on our cumulativc distribu
tion function and conscqucntly on thc 0.95
quantile estimates of thc mn-out ratios. To es
timate the run-out point and thc corrcspond
ing confidencc limits, wc took thc mcdian val-

ucs for x (3 for cach dcfinition of 8(3 and mul
tiplicd by thc rnn-out ratio cstimatcs. Thc
rangcs shO\vn in Figurc 5 rcprcscnt the dif
ferencc bctwccn uppcr and lowcr 95% confi
dcncc limits. So for our 0.95 quantile estimatc
whcn 8(3 = 18°, wc havc confidcncc in our cs
timation of the extremc run-out point within
±7 metcrs; howcvcr, when 8(3 = 26°, wc are
only confidcnt of our estimate within ±40 me
tcrs. Thus, to minimizc uncertainty duc to our
slll'vcying technique, thcse rcsults also imply
that 8(3 should hc defined so that the rcferencc
point lics ncar thc end of the avalanchc path.

In addition to thc prcviously mentioned
sourccs of unccrtainty we also necd to establish
a quantitative mcasure of thc quality of our
modcl. In csscnce we'dlikc to know if there is a
good chance that wc've chosen the right statis
tical modcL To do this wc have chosen to usc
the \V tcst as discusscd in Wadsworth [6, §6.7J.
Bascd on the size of our data set, with a 5%
level of significance we should have a value for
W between 0.369 and 0.979. Our data yields
a \V valuc of 0.939 which implies our rnodel
satisfics thc rcquircmcnts at a 5% level of sig
nificance; howcvcr, our model docs not satisfy
thc rcquiremcnts at a 1% lcvel of significancc.
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Conclusions

Based on results obtained thus far, the ex
treme value distribution model bears promise
as a user friendly tool for modeling even
avalanches with small vertical drops; however,
to be able to use this model more intelligently,
natural sources of variation need to be further
quantified.

The model developed here is based on a
small data set and therefore cannot be con
sidered reliable for estimating extreme ava
lanche run-out distances in the general case;
however, the resulting extreme value distribu
tion does help shed light on a few character
istics of the model. In particular, since most
of our extreme run-out points never reached
a local slope angle of ten degrees, our results
indicate that the models constructed by Mc
Clung, Mears, and Schaerer are quite con
servative when applied to avalanche paths in
Southwest Montana.

To optimize the models sensitivity to mea
surement, the definition where e{3 = 10° used
by McClung and Lied should work (Iuite well,
for large avalanche paths that run beyond lo
cal slope angles of ten degrees. For smaller
avalanche paths which may not reach a ten de
gree slope angle, e{3 should be defined slightly
greater than the slope of most of the run-out
points, er.
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