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Abstract.--Natural processes that are far from
near-quilibrium and show forms of self- organization
are extremely difficult to model with classical
physical methods. Local elementary transformations
in the sense of cellular-automata open an
alternate view at the modelling of these processes.

INTRODUCTION

Many processes in nature occur in a
thermodynamic state that is far from near­
equilibrium. From a physical point of view, they
are extremly difficult to model. Crystal growth of
ice or the solidification of a molten metallic
alloy are already too complex to be treated
rigorously. In addition ice shows the full scale
of growth forms from facet formation on
crystallographic planes in depth hoar to the
dendritic growth of crystals in supercooled water
or in the free atmosphere. These examples - and of
course anyone from biology - are illustrations of
highly non- equilibrium, self- organizing
phenomena. According to Langer's (1980) excellent
review on the classical state of pattern formation
in crystal growth, to deal with self- organizing
systems has become a fashionable occupation among
physicists, chemists and mathematicians. The
classical tools of mathematical physics, however,
are rather inadequate to express the underlying
processes, the related microscopic pattern and the
resulting macroscopic shapes. To overcome this
drawback, computer based methods have been used
widely.

These actual trends may be characterized
by the words of Maddox (1986): "Computer
simulations of aggregation processes are
fashionable because the problems are complicated.
... This fashion is a reaction to earlier
disappointments, and particularly to the
recognition that earlier macroscopic models of the
growth of aggregates, which distinguished between
the various positions on an extending surface only
by their macroscopic properties and especially
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their curvature, have given only poor accounts of
what really happens .... ". Physics seems to have
degraded to fashion!

DENDRITIC CRYSTAL GROWTH, CLASSICAL APPROACH

In dendritic growth of ice crystals, the
growth mechanisms are controlled by diffusion
fields. The rate of growth is determined by the
speed at which latent heat from the
crystallization process is dissipated. In
supercooled water, the diffusion of latent
crystallization heat is the dominant part. In the
free atmosphere the concentration of water vapor
(molecules and droplets) and the concentration­
and temperature gradients play an important
role.

In order to have sidebranches forming on a
growing dendrite, non- linear instabilities have
to develop and have to be sustained by an
appropriate mechanism. The marginal stability
hypothesis by Langer (1980) includes surface
tension and assumes that the speed at which the
tip of a dendrite grows is proportional to the
square of its curvature. In his paper's summary,
his critical questions anticipate the findings of
Honjo and Sawada (1985). With ammonium chloride
growing in a quasi two dimensional set up, they
have shown that this is not the case. How far then
is the theory correct?

CRYSTAL GROWTH, ALTERNATE APPROACHES

Because of the impossiblity to rigorously
formulate the growth processes, many authors have
tried to simulate crystal growth with various
numerical computing techniques (Kessler, 1984;
Ben-Jacob et al. ,1984). In diffusion limited
aggregation (Sander, 1984) for instance, a
particle diffuses from the outside to eventually
hit a central seed and to stick there. The
diffusion path is computed on a random walk basis
in a square lattice. The growth is limited by the
condition that the random walker has to hit a
particle from a previous step.



The cellular automata formalism, however,
starts from the center towards the outside. A
particle is incorporated in the frame if the
conditions in the nearest neighborhood are
favorable. This neighborhood is represented by a
local, hexagonal coordinate frame. The growth
algorithm can be combined with a Boolean function
to switch between different growth regimes or with
a random function to generate flaws and irregular
shapes.

CELLULAR AUTOMATA FORMALISM

J. v. Neumann (1966) invented the cellular
automaton and did the basic work in trying to
simulate mechanisms of self reproducing systems in
biology. Another biological analogon is the famous
game of life, devised by J. H. Conway as a play on
a checker board long before personal computers
were available. Local selection rules in a Moore­
coordinate frame (3*3) decide whether the central
"particle" comes into existence, stays alive or is
going to die (Hayes, 1984). The resulting patterns
are very similar to actual cell cultures on a
nutritive substrate. A systematic classification
of one- dimensional cellular automata is to be
found in the comprehensive review of Wolfram
(1983) .

Local transformations in a hexagonal
coordinate frame

Under normal vapor pressure and temperature
conditions, water crystallizes as ice I(h).
Projection of oxygen molecules on a plane
perpendicular to the crystallographic c- axis
reveals a hexagonal structure of the ice skeleton.
Non- equilibrium growth occurs preferentially in
this plane. A hexagon is therefore a rough but
reasonable approximation of an elementary
structural element. It has to be mapped on a
pseudo- hexagonal coordinate system, however, the
computer arrays being inherently either linear or
rectangular. For the central coordinate at the
intersection of row i with column j, the "nearest
neighbors" are located at i-l,j-l; i-l,j+l for
the previous row, at i,j-2; i,j+2 in the same row
and for the row below at i+l,j-l; i+l,j+l. This
coordinate frame has been used in this F77­
program (appendix).
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Figure 1. Simple XOR cellullar automaton
resembling near- equilibrium hexagonal
snow plates (from Good, 1985).
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The program simulates the (hexagonal)

dendritic growth regime by ANDing the XOR- with
the hexagonal direction formalism. A one­
dimensional ray results. Changing to the
undisturbed XOR algorithm from above to simulate
the growth of near equilibrium forms, the needles
will thicken and take on the shapes known from
figure 1. By switching back and forth from
hexagonal (XOR) growth to the dendritic (XOR AND
hexagonal direction) growth, the dendrites extend
in two dimensions.

Physically, the dendritic growth regime
favors the outflow of the latent heat of
crystallization by maximizing the active surface
of the crystal. The rate of accretion may slow
down by lowering the concentration of water
molecules.
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Figure 2. Magono and Lee (1966) diagram, vapor
pressure over ice and water versus negative
air temperature.

Two- dimensional, hexagonal XOR automaton

The algorithm used considers for each point
within its six nearest neighbors, whether one and
only one neighbor is "turned on". If this is
true, the center of the coordinate frame switches
from 0 to 1 (void -> ice). This corresponds to a
logical exclusive OR (XOR) operation. After a
number of steps, including the start of side
branching, simple hexagons result. This is in fact
the only way, "accretion" can initiate from a
single point (nucleus) that is in its ON state. If
the XOR algorithm is modified such that the
transition 0 -> 1 can occur with one OR two
neighbors turned on, no sidebranching is
initiated and only pure hexagons result. In the
XOR formalism, however, the growth of a new facet
starts always from corner points. Figure 1 (Good,
1985) illustrates a selection of the resulting
patterns. The computer algorithm performing this
growth is to be found in the listing of the F77
program of the appendix.

Nature produces similar hexagons in the free
atmosphere at -15 C and for a water vapor
pressure between ice saturation and water
saturation (Magono and Lee, 1966; Nakaya, 1954).

It is to be noted that in spite of the
suggestion of the Magono- diagram, all shapes of
figure 1 are equivalent having been generated by
the same algorithm.

Dendritic growth from a hexagonal XOR automaton

Figure 3. Hexagonal XOR dendrite. Long pure
dendritic, short undisturbed growth periods.

In the free atmosphere, going to even
stronger non-equilibrium conditions with faster
growth rates (hi~her supersaturation), the facets
cannot catch up with the dendrites that start from
the six corners because the latent heat of
crystallization is removed more easily from the
tips of the dendrites.

Figure 4. Hexagonal XOR dendrite with longer
periods of undisturbed "near- equilibrium"
growth than in figures 3.
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Figure 5. Hexagonal XOR dendrite. The vertical
branches show restricted growth of the
"undisturbed" hexagons (see figure 7)

In the diagram of Magono and Lee (1966) we
would move downward, along a vertical line (T =
- 15 C ; const) (figure 2) and the growth regime
of near equilibrium shapes would result. Moving
up and down in several cycles will produce a wide
variety of dendritic shapes. Because the latent
heat can best be dissipated at the outer boundary
of the crystal, only the outward looking
"subbranches" are stable in nature (figure 7).

The program does not account for this
asymmetry, therefore symmetric two- dimensional
shapes result on the needles. The simple figure 3
and the more complex one of figure 4 are
illustrations of the algorithm. The truncation in
the vertical branches of figure 5 is an artifact
due to the limiting of the the vertical growth
area by the parameter VB (Appendix).

CONCLUSION

The simple F77 algorithm in the appendix
simulates only two distinct growth formalisms
which are best illustrated by figures 1 and 6.
Any gradual difference or asymmetry have yet to be
introduced.

Figure 7. Natural dendritic snow crystal.
Because of latent heat dissipation, only
outward looking subbranches can grow.

The aim of this paper, however, is not to
present "physical" reality but to discuss an
alternate approach to the still open problem of
non- equilibrium crystal growth in the free
atmosphere. The algorithm is strictly two­
dimensional and does neither take into account
concentration gradients of water vapor nor
temperature gradients due to the dissipation of
latent crystallization heat. The model assumes
classical self- similarity where patterns from
elementary processes are also to be found in the
resulting macroscopic shapes. Complexity then
would not arise in the elementary processes but in
the extremely large number of steps between the
submicroscopic- and the macroscopic world.

In addition, this sketch may help to enter
the fascinating world of local transformations and
cellular automata in an aesthetically rewarding
field.
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Figure 6. Collection of a few hexagonal XOR
dendrites generated with the program
listed in the appendix.
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!33 LAYERS

!STEP COUNTER

!STEP COUNTER

!MOVE MARKER
!MARK

C. . .AUTOMATON FOR HEXAGONAL SNOIIFLAKE .
330 C-A(I-l,J-l)+A(I-l,J+l)+A(I,J-2)+A(I,J+2)+A(I+l,J·l)+A(I+l.J+
350 B(I,J)-O

IF(C.EQ.l)THEN !EXCLUSIVE OR
IF(K.LE.NIK)GOTO 365 !SI/ITCH 0 --->

C SELECTION OF GROIITH REGIMES....... . .
if(ss)THEN
if(k.eq.(nl+idg»then
nl-nl+nsb+idg
55-. FALSE. !switch to other regime
endif
ELSE
if(k.eq.(n1+nsb»then
nl-n1+idg+nsb
5s-.TRUE. !switch again to other
endif
ENDIF

C. .DENDRITIC GROIITH .
ID-2*(K+l-II)
JD-(2*K+1-IJ)
RI-(2*K+1-IABS(ID»
RJ-(2*K+1-IABS(JD»
GOTO(351,352,353)LL

351 IF(.NOT.SS)GOTO 360
GOTO 354

352 IF(K.LT.N1)GOTO 360
GOTO 354

353 IF(K.LT.N1.AND .. NOT.SS)GOTO 360
C SIMULATE GROIITH DIRECTIONS .
354 IF(ID.EQ.O)GOTO 365 !VERTICAL

AF-float(abs(JD»/float(abs(ID»!HEXAGONAL
IF«AF.LT.0.5).OR.(AF.GT.l.0»GOTO 300 !30, ... (ASYM)

355 RR-l./RI
IF(RJ .LT.RI)RR-l./RJ
IF(RR.LT.DI)GOTO 300
GOTO 365

360 IF(ABS(ID)-K.LT.SBR.AND.RJ.GT.VBII)GOTO 300
RL-SQRT(RJ*RJ+RI*RI)
IF«RL-K).GT.RVH)GOTO 365 !NON VERT.
GOTO 300 !SKIP

365 B(I,J)-l !SIIITCH ON
C... . DISPLAY .

FI-FLOAT(I)
FJ-FLOAT(J )
CALL CGL(l,FI,FJ) !MOVE POINTER
CALL CGL(33,FI,FJ) !DRAII POINT
ENDIF

300 CONTINUE
TYPE l,K
FORMAT (21H+ STEPCOUNTER: ,12)
DO 400 I-IL,IH
DO 400 J-JL,JH

400 A(I,J)-B(I,J) !COPY 1010RKPAGE
IF (K.GT.N1K)VBIo1-VBIo1+1 !EXTEND VERTICAL RANGE

500 CONTINUE
STOP 'fL6J<E'
END

!30, . .. DEGREES
CGL .

! INIT
!INIT VIEW SURFACE
!NEII FRAME (CLEAR)
!ORIGIN UPPER LEFT
!IIINDOIi
!VIEIIPORT

C. .PROGRAM FLAKEDU.. . .. FORTRAN-77 ..
c. .GOOD ... EISLF ... IIEISSFLUHJOCH ... 1985 ... 1986 ..
C. .SIMULATION OF HEXAGONAL GROIITH DIRECTIONS ...

VIRTUAL B(140,140),A(140,140) !2*19600 B\7ES
LOGICAL*l A,B,Y,Z,ss
INTEGER *2 C
type *,' HEXAGONAL "FLAKES" IIITH DENDRITIC REGIME'
TYPE *,' GROIITH DIRECTIONS AND UNDISTURBED GROIITH'
TYPE *,' (SEE NAKAYA OR MAGONO AND LEE (1966»'
TYPE *,' , '
TYPE *,' HEXAGONAL GROIITH UNTIL STEP'
ACCEPT *,Nl
NIK-Nl
TYPE *,' SHORT(l) ,MEDIUM(2), LONG(3) DENDRITES'
ACCEPT * ,11
TYPE *,' STEPS OF DENDRITIC GROIITH'
ACCEPT *, IDG
TYPE *,' STEPS OF UNDISTURBED GROIITH'
ACCEPT *,NSB
55-. true.
Y-.true.
DI-.5 !DISCRIM. OR VIA ACCEPT
SBR-O lOR VIA ACCEPT
IID-O.O lOR VIA ACCEPT

C RANGE OF UNDISTURBED GROIITH .
TYPE *,' VERTICAL BANDIiIDTH (O, .. DGR,UGR)'
ACCEPT *,VB
VBII-2*VB
RVH--2

C.... , .. PREPARE SCREEN AND
CALL CGL
CALL CGL(103,'TI:' ,3)
CALL CGL(92)
CALL CGL(86,l)
CALL CGL(80,.O,150. ,.0,150.)
CALL CGL(82,.l,l.,.l,.9)
DO 200 1-1,140
DO 200 J-l,140

200 A(I,J)-O
C SEED IN CENTER .

A(70,70)-1
CALL CGL(l,70.,70.)
CALL CGL(33,70. ,70.)
TYPE 3,ll,NIK,IDG,NSB,VB

3 FORMAT(6(/),' LONG NGR DGR UGR VBII'/I5,3I6,F6.1/)
C NUMBER OF LAyERS .

DO 500 K-l,33
IL-70-K
IH-70+K
JL-70-2*K
JH-70+2*K
II-O
DO 300 I-IL,IH
II-II+l
IJ-O
DO 300 J-JL,JH
IJ-IJ+l
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