
PREDICTING THE FRACTURE CHARACTER OF POTENTIAL WEAK LAYERS IN PENETROMETER 
SIGNALS 

 
James Floyer1,* and Bruce Jamieson1,2 

1Department of Geoscience, 2Department of Civil Engineering 
University of Calgary, Calgary, AB, Canada 

 
ABSTRACT:  Digital penetrometers have been shown to provide reliable assessments of snow hardness 
with depth; however, extracting useful information from the signals relating to stability has proved to be 
challenging. A scheme for predicting the fracture character of potential weak layers from penetrometer 
signals is developed. When a two-group classification between sudden (Q1) and other fracture character 
groups is performed, potential failure layers are correctly classified 80% of the time. The variables offering 
the best discrimination between sudden and other categories are weak layer thickness, average force 
gradient above the weak layer and, interestingly, both the average and the maximum force gradient below 
the weak layer. By itself, the fracture character prediction scheme is of limited practical use, since it 
requires the depth of the potential failure interface to be identified. However, we discuss how a weak layer 
tracing algorithm could be used as the basis for an operational model to detect weak layers from 
penetrometer profiles. By using the weak layer detection model in conjunction with the fracture character 
prediction, rapid, automatic identification of critical weak layers becomes possible. 
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1.  INTRODUCTION 
 

Digital force-resistance penetrometers 
(e.g. Schneebeli and Johnson, 1998; Mackenzie 
and Payten, 2002) are able to make rapid 
measurements of snow hardness with depth; 
these measurements are useful for characterising 
snowpack stratigraphy at the measurement 
location (Johnson and Schneebeli, 1999; 
Pielmeier and Schneebeli, 2003). However, critical 
information for avalanche forecasting includes a 
determination of whether there is a weak layer (or 
layers) in the snowpack and if so, how reactive the 
weak layer is to loading by snowfall, rain, wind-
blown snow or human-triggering. At present, 
manual snow observations are generally relied on 
to provide this information, using techniques that 
include analysing snow hardness, grain type and 
conducting (in)stability tests such as the 
rutschblock test or compression test (McClung and 
Schaerer, 2006, p.173). 
Assessing the character of fractures identified in 
isolated-column tests has gained rapid acceptance 
over the last five to ten years as a good aid for 
determining critical weak layers in the snowpack. 
Birkeland and Johnson (1999) and 
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Johnson and Birkeland (2002) presented the 
shear quality classification scheme (Q1, Q2, Q3), 
originally in association with the stuffblock test. 
This scheme has been adopted for use in the USA 
(Birkeland, 2004; Greene and others, 2004). 
Jamieson (1999) described a four-point system for 
recording the character of failures, which could be 
applied to compression and other snowpack tests. 
van Herwijnen and Jamieson (2005, 2007) 
modified Jamieson’s scheme into the five-point 
fracture character classification scheme that is 
currently in use in Canada (CAA, 2007, p.40). 
Schweizer and Wiesinger (2001) presented a 
three-point scheme for rating the quality of 
rutschblock fractures (clean, partly clean, rough), 
which was later modified by Schweizer (2002) 
(smooth, rough, irregular). Schweitzer (2002) also 
presented a release type classification for 
rutschblock tests (whole block, part of block, edge 
of block). A similar classification to this is now in 
use by Canadian avalanche operations (CAA, 
2007, p.33). 

In this study, we attempt to relate the 
shape of the penetrometer signal at fracture 
interfaces to the fracture character associated with 
those fractures. A scheme is presented that allows 
penetrometer profile segments to be separated 
into the two broad classes of sudden and other 
fractures, which are the major categories of the 
fracture character scheme described by van 
Herwijinen and Jamieson (2007). This is achieved 
by first selecting suitable variables from the 
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penetrometer signals using a univariate analysis 
and then developing a two-group discriminant 
model using the selected variables. We also 
explain how a recently proposed method for 
detecting weak layers in penetrometer profiles 
could be used in conjunction with this fracture 
character prediction scheme to allow the method 
to be applied where weak layers have not been 
pre-identified in the penetrometer profile. 
 
2.  PREDICTING FRACTURE CHARACTER 
 
2.1 Method 
 

Data for this study came from a set of 
compression tests and penetrometer profiles that 
were collected in close proximity to each other at a 
number of different sites during the winter of 2007-
2008. In total, 78 penetrometer profiles and 56 
compression test results were collected from 28 
different site-days and 16 unique sites. For sites 
that were visited more than once on different days, 
care was taken to select a previously undisturbed 
site for the new set of measurements. In addition 
to the penetrometer profiles and compression 
tests, a manual snow profile was recorded at each 
site. The relative location of the measurements 
made at each site is shown in Figure 1. 

 

 
 
Figure 1:  Schematic showing compression test 
geometry and penetrometer push locations. 

 
The penetrometer profiles were collected 

using a modified (Floyer, 2008, p.56) SABRE 
penetrometer (Mackenzie and Payten, 2002) 
manufactured by Himachal Safety Systems. This 
instrument recorded force-resistance with depth at 

a frequency of 1000 Hz. It was manually driven, 
vertically through the snow, resulting in a variable 
depth interval between measurement points. 

In a previous study (Floyer, 2008, p.81), it 
was shown that changes in the push velocity did 
not influence the force-resistance values in 
uniform snow provided that the instrument had 
reached a point of steady state deformation 
(attained within the first 6 cm during that study) 
and that the push velocity was kept within the 
velocity range of 30 to 100 cm s-1. With the 
exception of near-surface measurements, 
velocities used in this study were found to be 
within this range. For this reason, and to address 
the steady-state issue, near-surface fractures, to a 
depth of approximately 20 cm, were not 
considered in this analysis. 

Two standard compression tests were 
performed at each site (CAA, 2007, p.32; Greene 
and others, 2004, p.45). Depths to fracture 
interfaces were measured to the nearest 1 cm. 
The fracture character of each fracture was 
assessed for each fracture. During most of the 
tests, two people, an operator and an observer, 
agreed on each fracture character determination, 
reducing the subjectivity of determining the 
fracture character. 

In order to prevent the same fracture 
being included in the analysis more than once, 
only one penetrometer push was interpreted from 
each site-day investigated. There were between 
one and seven fractures identified in each 
compression test. Sometimes, fractures only 
appeared in one compression test and not the 
other. When this occurred, fractures that were 
present in either test column were deemed to be 
interpretable in the penetrometer profile. 

Fractures in low resistance snow could not 
be interpreted due to the inability of the SABRE 
penetrometer to reliably distinguish hardness 
differences in snow of this type. Fractures that 
occurred in fist hardness and in some cases, 4-
finger hardness snow were impossible to identify 
in the penetrometer signals and were excluded 
from the analysis. 

 
2.2 Results 

 
In total, 83 weak layers/interfaces were 

identified in the penetrometer signals. Of these, 41 
were resistant planar fractures, 20 were sudden 
collapse, 14 were non-planar breaks, seven were 
sudden planar, and 1 was a progressive 
compression. Due to the low numbers of sudden 
planar and progressive compression fractures, it 
was decided to combine the classes into sudden 
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fractures (sudden collapse and sudden planar) 
and others (resistant planar, non-planar breaks 
and progressive compression); this grouping 
reflects the higher incidence of skier-triggered 
avalanches associated with sudden fractures (van 
Herwijnen and Jamieson, 2007). 

Two examples of interpreted penetrometer 
pushes are shown in Figure 2, with the 
corresponding compression test results indicated 
at each fracture location. Weak layers (with 
thickness) are shown with a horizontal grey bar, 
with the top of the bar representing the top of the 
weak layer and the bottom of the bar representing 
the bottom of the weak layer. Interfaces (with no 
thickness) are shown with a dotted grey line. 

 
2.3 Univariate analysis 

 
A   number   of   variables   describing  the 

penetrometer signal associated with the weak 
layer or interface identified by the compression 
test fractures were considered. These variables 
are listed in Table 1. In the variable names given, 
an “A” in the name means that the parameter was 
assessed above the top of the weak layer, over a 
distance in mm given by the proceeding number. 
A “B” in the name means that the parameter was 
assessed below the bottom of the weak layer, 
again over the given distance in mm. 

In Table 1, t and p statistics are shown for 
group separation between the sudden and other 
groups for each variable. A positive t value 
indicates the mean value of that variable for the 
other group is higher than the sudden group. 
Variables with significant results at α=0.05 are 
indicated in bold. 

 

 
Figure 2: Compression test fracture locations interpreted onto four penetrometer profiles. Weak layers 
(with thickness) shown with a dark grey bar; interfaces (with no thickness) shown with a grey dotted line. 
SP = sudden planar; SC = sudden collapse; RP = resistant planar; PC = progressive compression; 
B = non-planar break. Numbers in parentheses represent the number of compression tests in which this 
result was seen out of a total number conducted at that site. Local avalanche observations noted: a) 
Lookout site, skier remote at 30 m; b) Gopher Butte site, no avalanche observations. 
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Table 1: Variables used in the fracture character comparison analysis. Bold type indicates significant 
mean differences between the sudden and other groups at α=0.05. 
Variable name Units   t   p Description 
WL_D cm 2.70 0.009 Weak layer depth 
WL_Thick mm -4.84 <0.001 Weak layer thickness 
WL_H N -1.36 0.177 Mean weak layer hardness 
Ratio_Slab_WL_10A 
Ratio_Slab_WL_20A 
Ratio_Slab_WL_50A 
Ratio_Slab_WL_100A 
Ratio_Slab_WL_200A 

 -1.69 
0.74 
1.16 
1.19 
1.11 

0.095 
0.464 
0.248 
0.238 
0.271 

Ratio of mean slab hardness to mean weak layer 
hardness. Mean slab hardness calculated over 10, 
20, 50, 100 and 200mm above the top of the weak 
layer. 

Avg_Grad_1A 
Avg_Grad_5A 
Avg_Grad_10A 
Avg_Grad_20A 
Avg_Grad_50A 

N mm-1 1.52 
2.47 
3.03 
3.14 
3.18 

0.132 
0.016 
0.003 
0.002 
0.002 

Average hardness gradient over a distance of 1, 5, 
10, 20 and 50 mm above the top of the weak layer. 

Avg_Grad_1B 
Avg_Grad_5B 
Avg_Grad_10B 
Avg_Grad_20B 
Avg_Grad_50B 

N mm-1 -1.94 
-2.09 
-1.99 
-2.44 
-2.31 

0.056 
0.039 
0.050 
0.017 
0.024 

Average hardness gradient over a distance of 1, 5, 
10, 20 and 50 mm below the bottom of the weak 
layer. 

Max_Grad_1A 
Max_Grad_5A 
Max_Grad_10A 
Max_Grad_20A 
Max_Grad_50A 

N mm-1 -2.14 
-2.30 
-2.23 
-2.76 
-2.11 

0.035 
0.024 
0.028 
0.007 
0.038 

Maximum hardness gradient over a distance of 1, 5, 
10, 20 and 50 mm above the top of the weak layer. 

Max_Grad_1B 
Max_Grad_5B 
Max_Grad_10B 
Max_Grad_20B 
Max_Grad_50B 

N mm-1 -3.53 
-3.79 
-2.87 
-3.22 
-3.38 

0.001 
<0.001 
0.005 
0.002 
0.001 

Maximum hardness gradient over a distance of 1, 5, 
10, 20 and 50 mm above the top of the weak layer 
respectively. 

The large number of variables tested 
reflects uncertainty over how far from the weak 
layer some of the parameters should be 
measured. For the ratio of slab hardness to weak 
layer hardness, none of the measurement 
distances were significant for group separation, 
which was surprising and a result that warrants 
further investigation. For the average hardness 
gradient above and below the weak layer, the 
optimum distance, based initially on the lowest p 
value and subsequently on the t value with the 
highest magnitude, was 20 mm from the weak 
layer interface. For the maximum hardness 
gradient (the magnitude of the gradient was used 
for this variable, which explains the negative t 
values for both above and below the weak layer), 
the optimum distance above the weak layer was 
20 mm, whereas for below the weak layer, the 
optimum distance was 5 mm. 

The following variables were selected for 
the discriminant model: WL_Thick, 
Avg_Grad_20A, Avg_Grad_20B, Max_Grad_20A, 
and MaxGrad_5B. Weak layer depth was not 

selected, since the overlap of the interquartile 
range of weak layer depth for the sudden and 
other groups (Figure 3) shows that, while the 
mean value differs significantly between the two 
groups, the variable does not offer good group 
discrimination. In order to reduce collinearity, only 
the optimum distance variable from each group of 
gradient variables was selected, despite the fact 
that more than one variable was shown to be 
significant for group separation. 
 
2.4 Discriminant analysis 
 

A linear discriminant analysis (e.g. Manly, 
1994, p.107) was performed using the variables 
selected from the univariate analysis above. 
Discriminant analysis seeks to find a linear 
combination of the predictor variables, 

mm XAXAXAZ +++= K2211 , that exhibits 
the largest difference between group means 
relative to the within-group variance. 
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Figure 3: Box plot of the interquartile range of 
weak layer depth for sudden and other groups. 
Box shows the 25%-75% range; whiskers show 
the non-outlier min-max and the small square 
shows the median value. 
 

For discriminant analysis, it is 
advantageous to use group sizes that are 
approximately equal. This ensures that the a-priori 
probability of predicting sudden group membership 
is the same as predicting other group 
membership, and should result in parity between 
classification rates for the two groups. Equal group 
size was achieved by eliminating records from the 
other category using a random number generator. 
Out of an original 110 data points, only 54 were 
selected: 27 for each group. Due to the small 
group sizes, a leave-one-out cross-validation 
approach was used for independent validation of 
the model. 

Group separation is indicated using Wilks’ 
Lambda (Wilkinson, 1990), which is the ratio of 
within-groups sums of squares to the total sums of 
squares. It takes a value between 0 and 1 with a 
value near 0 indicating that the (multivariate) 
group means are different and a value near 1 
indicating that group means are the same. For this 
analysis, Wilks’ Lambda=0.43, which is 
encouraging, as it indicates reasonable group 
separation between sudden and other fractures. 
The associated F statistic is 5.4, with p=0.007, 
which indicates that group separation is significant 
at the α=0.05 level. 

The standardised discriminant function 
weights and the factor structure coefficients 
(loadings) are shown in Table 2. The discriminant 
function weights denote the unique (partial) 
contribution of each variable to the discriminant 
functions, while the structure coefficients denote 
the simple correlations between the variables and 
the functions; therefore, the structure coefficients 
are more appropriate for substantive 
interpretations of the functions (StatSoft, 2007). In 
both cases, a positive value indicates positive 

correlation with sudden fractures, whereas a 
negative values indicates positive correlation with 
other fractures. 
 
Table 2: Discriminant analysis function coefficients 
for determining sudden/other group membership. 
Factor Standardised 

discriminant 
function weights 

Factor structure
coefficients 

WL_Thick 0.80 0.59 
Max_Grad_5B 0.61 0.51 
Avg_Grad_20A -0.17 -0.42 
Avg_Grad_20B 0.35 0.36 
Max_Grad_20A 0.02 0.32 
  

From the factor structure coefficients in 
Table 2, it is clear that weak layer thickness 
contributes the most to group separation, with 
thick layers selecting for sudden fractures. This 
has an intuitive explanation that thick weak layers 
are associated with sudden collapse fractures, 
which account for the bulk of the sudden fractures. 
It is possible that some sudden planar fractures 
may also be associated with relatively thick weak 
layers, although not sufficiently thick to be 
classified as sudden collapse. In view of this, it 
would be interesting to repeat this analysis with a 
data set containing a larger number of sudden 
planar fractures. 

The variable with the second greatest 
contribution to group discrimination, maybe 
surprisingly, is the maximum hardness gradient up 
to 5 mm below the weak layer. For this variable, 
the absolute value for the maximum was used, so 
the positive value means that a greater maximum 
hardness gradient selects for sudden fractures. 
The average hardness gradient 20 mm below the 
weak layer also contributes to discrimination, 
although to a lesser extent. These two variables 
combined indicate that a stiffer substratum may 
favour sudden fractures. 

Both the average gradient and the 
maximum gradient 20 mm above the weak layer 
also contribute to group separation, with factor 
loadings of -0.42 and 0.32 respectively (Table 2). 
The negative value for the average gradient is 
associated with the negative average gradient 
values above the weak layer (generally a 
decrease in hardness with an increase in depth); 
so a higher negative value still indicates that 
higher values are associated with sudden 
fractures. These variables relate to the generally 
accepted view that a stiffer layer of snow above 
the weak layer is important for fracture 
propagation (van Herwijnen and Jamieson, 2007). 
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The discriminant function was used to 
classify the weak layer/interfaces identified in the 
penetrometer signals into sudden or other fracture 
character groups. During the leave-one-out cross-
validation method used in this analysis, the 
discriminant analysis function was built N times, 
where N is the number of weak layer records from 
the equalised data set (N=54). On each occasion, 
one record was withheld and classified using the 
function built without using that record. As a result, 
the exact coefficients for the discriminant functions 
built during the test would have varied slightly from 
those shown in Table 2. 

Table 3 shows the results of the 
classification. 77.8% of sudden fractures were 
correctly classified and 81.5% of other fractures 
were correctly classified. The overall prediction 
rate was 79.6%. Classification parity was good 
between the two groups. 

 
Table 3: Classification matrix for predicting 
fracture character from the selected penetrometer 
signal variables. Results in parentheses show 
actual numbers. 
Class Sudden (observed) Other (observed)
Sudden 
(predicted) (21) 77.8% (6) 22.2% 

Other 
(predicted) (5) 18.5% (22) 81.5% 

Overall classification rate: 79.6% 
  
3.  WEAK LAYER DETECTION 
 

The results from the fracture character 
prediction scheme are encouraging, since they 
indicate that weak layers associated with fractures 
may be separated into “critical” (sudden) and “less 
critical” (other) categories using fairly rudimentary 
parameters associated with the penetrometer 
signals. One major limitation to this approach is 
that it is necessary to pre-identify the weak layers. 
Penetrometer signals must be analysed by an 
experienced operator and the portion of the signal 
representing the weak layer extracted accordingly. 
Outlined here is a framework for weak layer 
detection that could be used in conjunction with 
the fracture character prediction to provide rapid, 
automated identification of critical weak layers. 

Floyer and Jamieson (2008) have shown a 
spiking deconvolution algorithm to be effective for 
tracing weak layers between slightly varying 
penetrometer profiles across a transect or grid of 
profiles. This method also relies on the pre-
identification of the weak layer of interest, which is 
then traced across to other profiles. Various 

processing steps are employed before the signal 
being examined is reduced to a series of spikes 
representing the relative likelihood of that portion 
of the signal being similar to the weak layer of 
interest. 

For weak layer detection, rather than weak 
layer tracing, the penetrometer signal being 
examined could be tested against a database of 
possible weak layer signal fragments (known as 
wavelets) using broadly the same mathematical 
framework. Although the database of weak layers 
also requires pre-identification of weak layers, 
once built, it could be used repeatedly without the 
need for constant updating. 

The model outline is as follows: 
a) Build weak layer database by identifying 

penetrometer signal wavelets associated with 
unstable snow conditions. 

b) Collect penetrometer profile(s) in the forecast 
area. 

c) Test each profile against all possible weak 
layers from the database. 

d) Query the spiking deconvolution model output 
for signal portions (in the signal being 
examined) that closely match any of the 
critical weak layers in the database.  This 
could be augmented using additional 
knowledge about the weak layer, such as its 
likely burial depth or type of weak layer 
expected (surface hoar, facets, etc…). Extract 
any signal fragments from the signal as weak 
layers to be further tested. 

e) Run the extracted weak layers through the 
fracture character prediction model to 
determine whether they are likely to be 
associated with sudden or other fracture 
characters. 

 
4.  DISCUSSION 
 
4.1 Predicting fracture character 
 

The effects of substratum properties have 
not been as extensively investigated as slab 
properties. Recently, Habermann and others 
(2008) have shown, using simulations of static 
skier loading, that skier induced stress at the weak 
layer is greater when hard layers or crusts are 
found below the weak layer than when they are 
found above it. This result agrees with previous 
results from Jamieson and others (2001), who 
found that deep, persistent weak layers (the 
fracture character was not recorded, but it might 
be reasonable to assume that it was sudden) 
persisted for longer when the substratum was stiff; 
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also with field studies by Savage (2007), who 
noted that all large, deep avalanches in the study 
area were associated with very stiff substratums. 
However, this result was not detected in an earlier 
study by Schweizer and Jamieson (2003), who 
found that a pronounced hardness difference was 
important for distinguishing stable profiles from 
unstable profiles, but that the sign of the hardness 
change did not matter. 

It should be noted, however, that 
Habermann and others’ simulations involved 
calculating the applied stress at the weak layer; 
therefore it is likely that these results pertain 
mainly to fracture initiation. Sudden fracture 
character, on the other hand, is regarded to be 
more associated with fracture propagation (van 
Herwijnen and Jamieson, 2007). Schweizer and 
Camponovo (2001) suggested that fracture 
propagation depends on the difference in stiffness 
between the weak layer and both adjacent layers. 
van Herwijnen and Jamieson (2007) argue that an 
increase in the hand hardness difference between 
the weak layer and adjacent layers indicates a 
decrease in the relative modulus of the weak 
layer, which increases the fracture energy at the 
weak layer interface. Their data showed a 
significant correlation between high fracture 
propagation propensity and the hardness 
difference between the weak layer and the layer 
above; however, the correlation with the hardness 
difference between the weak layer and the layer 
below was insignificant. Therefore, current models 
of fracture propagation assume that the hardness 
of the substratum is important, although so far, 
data to back that claim up are lacking. The results 
of this study lend weight to there being a link 
between the substratum hardness and propensity 
for sudden fractures in compression tests. 

The sample size used to formulate the 
fracture character prediction model was fairly 
small and the sudden fractures were 
predominantly associated with one weak layer, the 
04-Feb-2008 surface hoar layer. As such, the 
model is likely to be detecting largely for sudden 
collapse fractures. More penetrometer pushes in 
snowpacks with sudden planar fractures are 
needed to reliably test the model’s ability to predict 
this kind of fracture. 

In the fracture character prediction 
method, the weak layers were pre-identified as 
being associated with compression test fractures. 
In order to formulate this method for application in 
the general case, where there was no prior 
knowledge of the weak layer, a third, no fracture 
category would be required. This could be 
randomly populated with signal fragments that 

were not associated with weak layers. It is likely 
that such a three-category model would not 
perform as well the two-category model tested in 
this study. 

There was a strong possibility for bias 
when interpreting the fractures in the penetrometer 
profiles. Since the fracture character of the layer 
that was being interpreted in the penetrometer 
pushes was known, it is likely there was a 
tendency to select certain features in the 
penetrometer signal that were perceived to be 
associated with that type of fracture. In this way, 
the model was more likely to predict features that 
were actively selected during the interpretation. 
Since it is expected that certain types of fracture, 
(especially sudden collapse fractures), have a 
characteristic penetrometer signal, this bias is 
hard to overcome. It was limited to some extent by 
the constraint on varying the depth. Further 
improvements in the depth accuracy of the 
penetrometer or in assessing the depth of the 
fractures in compression tests would allow a 
tighter constraint on the depth location and further 
reduce this bias. Another possible way to reduce 
this bias would be to interpret the penetrometer 
signals without knowing the fracture character of 
the compression test failures. 

 
4.2 Weak layer detection 

 
One of the major advantages of digital 

penetrometers is the possibility for collecting a 
large number of profiles within a short space of 
time. While human interpretation of one 
penetrometer profile may be accomplished quite 
rapidly, interpreting a large number of profiles (say 
100 or more) is a tedious and undesirable task. 

The automated approach outlined above 
would be able to rapidly process the large amount 
of data associated with numerous penetrometer 
profiles and alert the operator to specific areas of 
concern. Such a method could potentially be built 
into a penetrometer which could be used by a less 
experienced operator to rapidly conduct a survey 
over a wide area of terrain. One example of a 
potential use for such an approach would be to 
determine whether in-bounds skier compaction 
had been effective for eliminating a weak layer of 
concern from a run. 

 
5.  CONCLUSIONS 

 
A method for predicting the broad fracture 

character group (sudden or other) from 
penetrometer signals has been presented, based 
on a multivariate statistical analysis of 
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penetrometer signals interpreted against fracture 
character results from nearby compression tests. 
Using a leave-one-out cross-validation method, 
overall classification rates of approximately 80% 
were achieved. Weak layer thickness, maximum 
hardness gradient 5 mm below the weak layer and 
the average hardness gradient 20 mm above the 
weak layer contributed the most to discriminating 
between the two groups. 

Results for the sudden category were 
almost certainly biased towards sudden collapse 
fractures, which dominated the data set used in 
this study. More observations are necessary to be 
able to distinguish between sudden collapse and 
sudden planar fractures in the sudden category, 
as well as between the resistant planar, 
progressive compression and non-planar break 
fractures within the other category. 

A framework has been presented for 
combining a weak layer detection method based 
on spiking deconvolution with the fracture 
character prediction scheme. Such a combination, 
if properly developed and tested, could allow 
rapid, automated, critical weak layer detection 
from penetrometer profiles. If such a method is 
developed and gains acceptance, the usefulness 
(and hence proliferation) of penetrometers for 
avalanche forecasting could be dramatically 
enhanced.  
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