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ABSTRACT. Avalanche impact pressure on a flat surface structure has been quantified by full scale 
experiments performed at the Lautaret avalanche test site (France). An inverse analysis method is 
developed to reconstruct the pressure applied on this macroscopic sensor from the deformations 
recorded during the impact. The deformation-to-pressure transfer function of the sensor is determined by 
analytical modelling and in-situ impact hammer tests. The transfer function is used to quantify the 
pressure of a 17 m/s avalanche artificially released on the structure. In order to access to the uncertainty 
of the reconstructed pressure, an advanced sensibility analysis is performed. Firstly, the uncertainties 
related to different parameters and processes involved are identified and estimated in the deformation-to-
pressure transfer function through probability distributions. Then, the sensibility of the reconstructed 
pressure to these parameters is investigated to identify the most contributing parameters. Finally, the 
distribution of the uncertainty is estimated as a probability density of the total error/uncertainty in the 
pressure via a Monte Carlo simulation. 
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1. INTRODUCTION 
 

Designing passive avalanche defense 
structures and zoning avalanche hazard are 
limited by our poor knowledge of the action of a 
snow avalanche against an obstacle. As no 
constitutive equation is available for flowing 
snow, flow-structure interactions remain 
therefore largely investigated by experimental 
studies. Among them, full-scale experiments are 
mainly important in that they validate small-scale 
experiments or numerical models and provide 
phenomenological information (Sovilla et al., 
2008; Berthet-Rambaud et al., 2008; Thibert et 
al. 2008). Most of full-scale studies dedicated to 
the estimation of pressure in avalanche have 
used small load cells to obtain insight into the 
avalanche structure and pressure distribution 
(Lang and Brown, 1980; Schaerer and Salway, 
1980; McClung and Schaerer, 1985; Norem et 
al., 1985; Kawada et al., 1989; Nishimura et al. 
1989, Abe et al., 1991; Schaer and Issler 2001; 
Sovilla et al., 2008). 
  
* corresponding author address: Dr. E. Thibert, 
ETNA (Cemagref), BP76, 2 rue de la papeterie, 
38402 Saint Martin d’Hères Cedex., 
emmanuel.thibert@cemagref.fr. 

Because such measurements are highly 
intrusive, a different approach has been 
proposed (Berthet-Rambaud et al., 2008; Thibert 
et al. 2008): A suitable experimental structure is 
set up in a real path, and the pressure is to be 
determined from an inverse analysis of the 
deformation of the structure measured during 
the avalanche. The low Eigen frequencies of the 
sensor-structure force to conduct a spectral 
analysis of the structure to acquire the 
deformation to pressure frequency transfer 
function. 

This approach provides measurements at 
a scale where the avalanche can be modelled by 
fluid mechanics equations. It has shown its 
potential to provide basic understandings of 
flow-structure interaction processes (Thibert et 
al., 2008). Here, we extend the analysis and the 
data process with an error analysis based on 
Monte Carlo simulations. 
 
2. METHOD 
 
2.1 Study Site and experimental set up 
 

Experiments are carried out at the 
Lautaret full-scale avalanche test site in the 
southern French Alps (45.033°N/6.404°E). This 
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site has been extensively described in previous 
papers (Issler, 1999; Berthet-Rambaud et al., 
2008; Thibert et al. 2008), so that only a short 
description is given here. 

The avalanche path n°2 is used for this 
experiment (Fig. 1). Its length is 500 m with an 
average slope angle of 36° that reaches 40° in 
the starting zone. The instrumented structure is 
a one square-meter plate supported by a 3.5 m 
high steel cantilever, facing the avalanche, and 
fixed in a strong concrete foundation (Fig. 2). 
The plate can be moved along the beam to be 
located exactly at the surface of the initial snow-
cover prior to avalanche release. It represents a 
large obstacle in comparison to the flow height 
and therefore integrates the effects of flow 
heterogeneities. Strains are measured at the 
bottom of the beam with precision strain gages 
placed in the maximum bending moment area. 
Sampling rate for data acquisition is set at 3000 
Hz to record dynamic effects. Signals are filtered 
with a cut-off frequency of 1000 Hz to ensure a 
bandwidth without aliasing. 

 
2.2 Inverse analysis 
 

The inverse analysis procedure is 
developed using dynamic strain measurements 
performed at the bottom of the structure. The 
avalanche action is assumed to be uniformly 
distributed over the plate. No avalanche force is 
assumed to act directly on the beam which is 
designed to remain elastic during avalanche 
loading, perfectly clamped at one end and free 
elsewhere. The equations of motion are those of 
structural dynamics (Gerardin and Rixen, 1993) 
and an Euler-Bernoulli beam model is used. 

 

 
 

Figure 1: Avalanche artificially released on the 
15 February 2007 in path n°2 where the 
instrumented structure is set up. 

The direct problem consists in evaluating 
the strain history from the loading, boundary and 
initial conditions. Using the Euler-Bernoulli beam 
model, the direct problem is firstly solved by 
assuming that the impacting force acts at a 
specific point. As described by Meirovitch 
(1986), this formulation is equivalent to solving a 
Fredholm integral equation of the first order: 

∑ ∫ −=
j

t

jiji dftht
0

)()()( τττε  (1) 

where εi is the strain history measured at a point 
xi (gage locations), fj the impact load at xj (center 
of the plate) and hij the transfer function between 
excitation and measurement points. The transfer 
function or its equivalent Frequency Response 
Function (FRF) in the frequency domain (ω: 
angular frequency), )(ˆ ωh , is known once the 
mechanical model of the structure including its 
boundary conditions has been set (Fig. 3). The 
FRFs can be also directly measured from impact 
hammer tests or calculated from numerical finite 
element computations (Thibert et al., 2008). As 
explained in that paper, we use the analytical 
Euler-Bernoulli beam model in good agreement 
with the 2 other possible calculations of the FRF. 
An additional point mass (190 kg) to the model is 
used to simulate the plate. This one was located 
at Lp=1.50 m from the clamped end during the 
avalanche released on the 15 February 2007. 
 

 
 

Figure 2: Instrumented structure set up in path 
n°2. The 1 m2 plate can be moved along the 
beam to be located exactly at the surface of the 
snow-cover. 
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3. RESULTS: AVALANCHE IMPACT 
PRESSURE RECONSTRUCTION 
 

As detailed in (Thibert et al. 2008), snow 
and meteorological conditions on 15 February 
2007 allowed artificial release of a quite large 
avalanche above the structure. We have used 
the data reported in that paper to develop here 
an error examination of the inverse analysis data 
process. The reconstructed load of this 
avalanche is obtained from the solution of the 
inverse problem given by the regularized 
deconvolution formula: 

)(ˆ
)(ˆ)(ˆ

=)(ˆ
ω

ωφωε
ω δ

δ h
f ⋅  (2) 

where the symbol “ ^ ”denotes Fourier transform 
functions of the circular frequency variable ω. 

Given that the FRFs can have very small 
amplitudes and that the measured signal δε  is 
polluted by the measurement noise, the direct 
deconvolution of Eq. (2) without regularization 
leads to instability of the inverse problem 
(Tikhonov and Arsenin 1977). The solution is 
therefore to find the optimal level of 
regularization between stability and accuracy. 
This optimal level is achieved using the Morozov 
discrepancy principle (Groetsch, 1993). The 
optimal value of regularization is here cω =25 Hz 
as obtained from the L-Curve (Groetsch, 1993) 
which reduces significantly the initial 0-1000 Hz 
bandwidth. Fig. 4 shows the L-Curve graph of 
the norm of the residual versus the solution. The 
reconstructed pressure from gage n° 1 is plotted 
in Fig. 5. 
 

    
 

Figure 3: FRF as deduced from the Euler-
Bernoulli direct model. Note that the value of 
18.6 Hz was measured during hammer tests. 

The maximum pressure is around 35 kPa 
for this avalanche. Despite the reduced 
bandwidth due to regularization, a dynamic 
analysis is still worthwhile in the frequency range 
covering the first Eigen mode of the structure (20 
Hz). A constant frequency transfer function 
extrapolated from the static case would be: 

E
lL

hh p
Ι2

=)0(ˆ=)(ˆ ω , (3) 

where E is the Young’s modulus, and where 
other annotations are given in Fig. 6. The 
moment of inertia, Ι , equals 1.29x10-4 m4 using 
data of Fig. 6. It results that )0(ĥ =6.50x10-9 N-1 
using for structural S235 steel a Young’s 
modulus of E=210 GPa. The static extrapolation 
to higher frequencies is not acceptable above 5 
Hz as static and dynamic response functions 
differ from more than 3 dB (Fig.3). 
 
4: DISCUSSION: ERROR ANALYSIS 
 

Errors in the reconstructed pressure are 
determined considering various sources of 
uncertainties both in measurement and in the 
model. Calculations are done in two steps: first, 
static conditions are only considered and 
uncertainties in the deformation-to-pressure 
transfer function )0(ĥ  are quantified. Second, in 
order to take into account the frequency 
dependence of the FRF, an iteration of 500 
inverse analyses is performed using a 
distribution of direct models resulting from Monte 
Carlo (MC) simulations. 

 

 
 
Figure 4: L-Curve determining the optimal cut-off 
frequency (25 Hz) of regularization according to 
the Morosov discrepancy principle. 
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Figure 5: Reconstructed pressure for the 
avalanche released on 15 February 2007. 
 
 
4.1 Static calculations 

 
In the following, uncertainties are 

quantified by standard deviations and combined 
assuming they are uncorrelated. Under static 
conditions, the transfer function given by 
equation (3) links the pressure, P, to the 
measured deformation ε according to: 

εε
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so that the error in the pressure (ISO, 1995) is: 
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which highlights the contribution due to the 
measurement errors, σε, and to the model error 
included in the FRF uncertainty 

)0(ĥ
σ  term. The 

first term in the right-end side of equation (5) can 
be calculated from equation (3) and from strain 
gage measurement noise, σε, estimated in the 
signal before the avalanche reaches the 
structure (4x10-6 m/m). The measurement error 
is therefore 0.62 kPa. Estimating the second 
term of equation (5) requires calculating the 
variance of )0(ĥ  from equation (3). This yields to 
(ISO, 1995): 
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Figure 6: Geometry of the steel beam and the 
plate, and associated momentum of inertia, Ι , of 
the beam. 
 
 
where the σ  terms denote the uncertainties of 
the position of the plate on the beam (Lp), of the 
width of the beam (l), of the Young’s modulus 
(E) and of the momentum of inertia ( Ι ).This last 
one is calculated from equation in Fig. 6 with 
typical production tolerances for dimension 
uncertainties (±2.5 10-4 m). This gives 

Ισ =1.79x10-6 m4. The plate location uncertainty 

is 
pLσ =1 cm and the Young’s modulus error is 

Eσ  = 12 GPa. This results in an error on the 

static transfer function, 
)0(ĥ

σ , of 3.85x10-10 N-1 

(a little less than 6% of )0(ĥ ). Considering 
typical deformation measured during the 
avalanche (10-4 m/m) for a static load of 15 kPa, 
it results that the uncertainty in the pressure due 
to the model error is 0.91 kPa. The overall error 
given by equation (5) is therefore 1.10 kPa 
(7.3% of relative error) under static load 
conditions. 
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Table 1: Parameters used in the sensitivity analysis and their distributions. U and N letters denote the 
uniform and normal law of distribution (see text). 
 

parameter law mean Umin Umax σ unit 
boundary condition U 100 95 105  % 
plate position, Lp U 1.47 1.46 1.48  m 
Young’s modulus, E N 210   12 GPa 
moment of inertia, I N 129   1.8 10-6 m4 
beam length U 3.5 3.49 3.51  m 
additional plate mass U 190 180 200  kg 
steel density U 7850 8046 7654  kg/m3 
beam section N 100.8   1.34 10-4 m2 
damping coefficient U 0.0033 0.0032 0.0034   
strain gages position U 200 198 202  mm 
beam width, l U 240 239.75 240.75  mm 
snow deposition N 120   10 kg 

 
 
 
4.2 Dynamic calculations 

 
Under dynamic loading conditions, the 

FRF frequency dependence must be taken 
into account to quantify the model error. This is 
done first through a sensitivity analysis: the 
uncertainties related to different parameters 
and processes are identified and quantified in 
the deformation-to-pressure transfer function 
through probability distributions. This is 
summarized in Table 1 where twelve identified 
parameters are characterized by their 
distribution probability. Letter U denotes a 
uniform distribution between a minimum and a 
maximum (Umin, Umax) and letter N(m, σ) 
denotes a normal distribution whose mean is 
m and variance σ. The real clamping condition 
of the beam is quantified (%) by its effect 
(shifting) on the 1rst Eigen frequency 
corresponding to an ideal boundary condition. 

 
 

 
 

Figure 7: Influence of the 8 main parameters 
on the FRF in % of the total variance of the 
first Eigen frequency. 

 
The sensibility of the reconstructed 

pressure to these parameters is investigated to 
identify main parameters (Fig. 7). The 
influence is expressed in % of the total 
variance of the first Eigen frequency of the 
FRF. The overall variance is low with only 0.94 
Hz. The most critical parameter is the degree 
of perfection of the clamping condition of the 
beam in its foundation which explains alone 
63% of the total variance. The second one is 
the position of the plate on the beam (23%). 
Other parameters have much less influence on 
the FRF but are not negligible. The final step in 
the error analysis is to sample each parameter 
according to its distribution law (MC 
simulation). A population of 500 samples is 
extracted from the distribution laws of each 
parameter to calculate the corresponding 
transfer functions and to conduct inverse 
analyses to get a family of reconstructed 
pressure curves. 
 

 
 

Figure 8: Distribution of FRFs as obtained from 
the samples of the MC simulation. 
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Figure 9: Mean pressure profile and pressure 
profiles at ± 3σ as estimated from MC 
simulations. 
 

Fig. 8 shows the distribution of the 500 
FRFs. The mean Eigen frequency is 20.98 Hz. 
FRFs have lower amplitudes than the FRF 
plotted in Fig. 3 because of the additional 
mass of 120 kg which is taken into account to 
simulated snow deposition on the plate 
(Thibert et al., 2008). Lower transfer function 
amplitudes result in higher reconstructed 
pressures compared to the initial pressure 
profile plotted in Figure 5. The model error 
calculated from MC simulation is typically 1.25 
kPa over the pressure profile of Fig. 9. The 
relative error can be considered as roughly 
constant (6.4%) yielding to a maximum of 3 
kPa at the pressure peak. This mean error is 
slightly greater than the model error calculated 
under static load conditions (5.9%). This is 
related to the FRF whose mean over the 
bandwidth (0-25 Hz) is higher than )0(ĥ . 
The error of the model is combined to the 
measurement error to get the overall error as 
done under static load conditions. This is done 
assuming that the measurement error is not a 
function of the frequency over the bandwidth 
0-25 Hz. Figure 10 confirms such a hypothesis 
as noise in the deformation signal before the 
avalanche reaches the structure has a 
spectrum which can be considered as not 
frequency dependent. Note that regularization 
cannot, however, completely eliminate the 
effect of measurement noise and the model 
error cannot be completely uncorrelated to the 
measurement errors. However, because this 
even effect is minimized by regularization, 
these both types of errors will be combined 
assuming they are uncorrelated. 

 
 

Figure 10: Frequency spectrum of 
deformations. The upper curve is the signal 
and noise during the avalanche. The lower 
curve is the noise without physical signal 
(before the avalanche) which does not depend 
on the frequency. 
 

The measurement contribution to the 
overall error will be therefore considered as an 
additional term of 0.62 kPa as estimated in the 
static condition calculations. The overall error 
is therefore given as a function of time by: 
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where P(t) is the pressure obtained from 
inverse analysis expressed in kPa. 
 
4: CONCLUSION 
 

The purpose of this paper was to 
provide an error analysis in the estimation from 
inverse analysis of the impact pressure of an 
avalanche that was reported in our previous 
study (Thibert et al. 2008). The error can be 
decomposed in 2 contributions. The first is 
related to strain measurement errors due to 
noise in the gage signals. It can be estimated 
under static loading conditions of the 
instrumented structure and is about 0.6 kP. 
The second contribution is related to 
uncertainties in the model used in the inverse 
analysis. A sensitivity analysis of the 
parameters included in the model shows that 
the main sources of error are the clamping 
conditions of the structure in its foundation and 
the position along the beam of the 1 m2 plate 
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where the avalanche pressure of is applied. A 
Monte Carlo simulation shows that the relative 
error of the model is constant and about 6.4% 
of the reconstructed pressure from the inverse 
analysis. The overall (measurement + model) 
error for our experimental set-up and 
associated data process is therefore typically 
±3.6 kPa for a 50 kPa pressure avalanche. 
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