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COMPARISON OF VARIOUS FORECAST PRODUCTS OF HEIGHT OF NEW SNOW IN
24 HOURS ON FRENCH SKI RESORTS AT DIFFERENT LEAD TIMES
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ABSTRACT: This work compares the skill of various forecasting products of Height of new Snow (HS)
available in French mountainous areas. The solid precipitation of AROME and ARPEGE Numerical Weather
Prediction (NWP) models at the grid cell scale are converted in HS with an empirical density law used in
Meteo-France operational automatic products or with a fixed density. We also consider massif-scale
forecasts including a physical simulation of the snowpack on the ground and adjusted at the elevation of the
stations. Finally, we consider supervised forecasts at a fixed elevation. The skill of the products is assessed
at 10 ski resorts in Northern French Alps. The skill highly depends on the snowfall amount with significant
and systematic biases of some products for the highest HS values. This work demonstrates that an optimal
automatic forecast of HS requires (1) a spatial aggregation of the NWP model outputs and (2) a statistical
post-processing of the forecasts to remove model biases.
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1. INTRODUCTION

Forecasts of Height of new Snow (HS, Fierz et al,
2009) are crucial in mountainous areas for various
economic activities (tourism attractiveness, snow
management in ski resorts, roads managements,
avalanche hazard survey, etc.). Realistic
forecasting of this variable is still a challenge for
several reasons. First, it is difficult to describe the
high variability of HS as a function of elevation in
mountainous areas, even at the best spatial
resolution available in Numerical Weather
Prediction (NWP) models. Then, several processes
are not or not well represented in NWP models
such as the density of falling snow, mechanical
compaction during the deposition and variations of
the rain-snow limit elevation during some storm
events.

Currently in France, there are two types of HS
forecasts. First, the forecasters provide daily an
assessment of the expected HS for the next 2 days
at a 24 hour time step at the massif scale (about
1000 km?) for the specific elevation of 1800 m a.s.I.
These estimates are provided on the Meteo-France
website and in the avalanche hazard estimation
bulletins. The main limitation is the fixed and unique
altitude. Automatic prediction offers a better spatial
coverage. They can be extracted from the
Numerical Weather Prediction models of Meteo-
France: AROME (high spatial resolution model,
Seity et al, 2011) and ARPEGE (global circulation
model, Courtier et al, 1994). Despite the continuous
improvement of their horizontal resolution, the
surface elevation remains smoothed in these
models. Therefore, the snow forecasts at the point
scale are affected by potential discrepancies with

* Corresponding author address:

Matthieu Lafaysse, Météo-France, Centre
d’Etudes de la Neige, 1441 rue de la Piscine,
38400 Saint Martin d’'Héres, France ;

tel: +33 476637928

email: matthieu.lafaysse@meteo.fr

1150

the elevation of the model grid cell. Furthermore,
these models only provide snow precipitation
estimates and do not represent accurately the
processes affecting the snow on the ground. Using
a snowpack numerical modeling system can solve
this issue. In France, the SAFRAN
SURFEX/ISBA-Crocus MEPRA (S2M) chain
(Durand et al, 1999; Lafaysse et al, 2013) includes
two main components. The SAFRAN system
(Durand et al, 1998) adapts ARPEGE forecasts to a
geometry best suited to mountainous  areas
including more specifically a detailed elevation
resolution. The Crocus snowpack model (Vionnet et
al, 2012) contains all physical equations describing
the evolution of the snowpack on the ground. It can
be seen as a physical tool to adapt SAFRAN
meteorological outputs to snow forecasts. The
S2M chain provide meteorological predictions
adapted at the specific elevation of each ski resort
and account for the topographic specificities of
each point (aspect, shadows, etc). The goal of this
study is to compare the skill of these different
products. Section 2 describes the dataset and the
evaluation metrics chosen for the study. Section 3
presents the results. The main learnings are
discussed in Section 4.

2. MATERIAL AND METHODS

This study focuses on the comparison between
these models outputs and observations from 10
French ski resorts selected for their number of
available observations and to cover a large part of
the mountainous area of French Northern Alps as
well as a large range of elevation (Figure 1). Their
elevation range between 1400 m and 2600 m a.s.l.
is shown on Figure 1. Table 1 shows the difference
between resort elevation and NWP models grid
cells elevation. It shows that there is a significant
difference between some resorts elevation and
models grid cells elevation. These differences can
induce some systematic bias. The SAFRAN -
Crocus chain is not affected by this issue because
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Figure 1 : Resorts used in this stu with altitude
in meters over the SAFRAN mountainous area.

Resort Elevation AROME ARPEGE
La Plagne 1970 2198 2132
Les Saisies 1650 1675 1746
Tignes 2080 1705 1962
Lans En
Vercors 1400 1357 1265
Orelle 2350 2600 2683
Saint Frangois
Lonchamp 1620 1816 2087
Les 2 Alpes 2590 2594 2609
Avoriaz 1765 1865 1994
BO””X‘r’Ca' U 1795 2003 3015
Alpe d'Huez 1860 1910 2250
Table 1 : Difference between resorts and models

points grid elevation in meters

simulations are applied at the specific elevation of
each resort.

2.1 Height of new snow assessment
2.1.1 NWP models

NWP models do not provide a value of HS on the
ground (in centimeters), but a solid precipitation flux
(in kg.m2h™"). A common way to convert this
variable into HS is to assume a fixed density and to
neglect compaction, melting and other processes
happening to the snow on the ground. A density of
100 kg.m™® is commonly used by Meteo-France
forecasters to assess HS. In our study, this value is
applied to all NWP models (AROME, ARPEGE and
SAFRAN).

Meteo France has also developed an equation
named snow potential (PN), which outputs a value
of HS from the solid precipitation flux based on a
density which is a function of air temperature. The
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critical air temperature is -2°C and the snow density
D in kg.m* is included between 50 kg.m* and 300
kg.m* following the next equations :

= max(50;85+5x T)if T<—2°C

min(300 ;160,371 xexp(0,38xT ))if T>—2°C
This equation comes from the forecasters but has
never been extensively evaluated on mountainous
areas. In this study, it has been calculated for
AROME and ARPEGE at a hourly time step and
then cumulated at a daily time step. They are
named respectively ARO_PN and ARP_PN in the
following text.

2.1.2 Crocus outputs

Currently, only Crocus output provide directly HS on
the ground with an empirical parameterization of
falling snow density (Vionnet et al., 2012; Pahaut,
1975) from air temperature and wind speed
which is applied on SAFRAN solid precipitation
output. Then, the simulation accounts for
compaction during and after the snowfall, and
potential melting in the case of a warming with or
without rainfall. As the age of the snow layers is an
explicit model diagnostic, it is possible to extract the
24h  HS which is directly comparable to
observations.

2.2 Datasets

All observations are given at 06h UTC in the
morning. Here, the evaluation of 24h HS is
performed for the four pasts winters (2015-2018)
between the 1% of December and the 30" of April
and at a 30h lead time for all the automatic
products previously described. It means that the
period of new snow accumulation is included
between 06h UTC present day and 06h UTC next
day. NWP models AROME and ARPEGE are used
with the run initialized at 00h UTC. The
corresponding ARPEGE run is used to force the
S2M chain.

2.3 Skill score

The statistical distribution of daily precipitation is far
from Gaussian (Ye et al, 2018). The higher snowfall
rates are the least frequent but their impact can be
very important. This is why we have decided to use
skill scores conditioned to a threshold to explicitly
discriminate the skill of the high HS values. We
computed the following classical scores: frequency
bias (BIAS), Heidke skill score (HSS), probability of
detection (POD), false alarm rate (FAR). All these
scores are defined from the contingency table,
represented on Figure 2 as follows:

BiAs=2*Y  pop=—9_  pg=-b_
a+c a+c a+b
ad—bc

HSS=

((a+c)*(c+d)+(a+b)x(b+d))/2
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Figure 2 : Contingency table

The Heidke Skill Score measures the improvement
of the forecast compared to a random forecast.

Each score is computed separately for each ski
resort. Then, an average of each score among the
10 resorts is also computed to summarize the
general behaviour.

2.4 Statistical calibration

Statistical calibration methods are commonly
applied to meteorological forecasts to remove
systematic model biases and improve the final
forecast products (Wilks, 2011). Therefore, as a
first step, we evaluate here the skill of a linear
regression between observations and forecasts.
We also computed the previous skill scores for the
forecast product with the best linear correlation
(Crocus, section 3.3). This is done independently
for each ski resort. This calibration is called
‘AS_CRO'’ in the following text.

2.5 Comparison with forecasters predictions

Forecasters predictions are given at 1800 meters
a.s.l. for all mountainous areas. Due to the lack of a
systematic storage of these predictions in an easily
accessible database, it was only possible to
compare supervised and automatic forecasts during
the previous 2017-2018 winter at La Plagne and
Les Saisies ski resorts.

3. RESULTS

3.1 Averaged skill score

Figure 3 shows the averaged results over the 10
resorts for each forecast product. First, a positive
frequency bias (i.e. overestimation) appears for the
forecast products based on ARPEGE with the low
thresholds (especially 2 cm). AROME is unbiased
on that criteria. When the threshold increases, the
bias of the products with a 100 kg.m™® density
remains stable whereas the positive bias of the
snow potential highly increases for both ARPEGE
and AROME. Conversely the bias of SAFRAN-
Crocus physical simulations becomes significantly
negative especially above 20 cm. The simple
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statistical adaptation by linear regression
(AS_CRO) is not able to completely remove this
bias.

About probability of detection, AROME gets the
worst score for the lowest threshold. On the other
hand, Crocus statistical adaptation gets the best
score until 5 centimeters. For threshold higher than
5 centimeters the detection rates decrease for all
models.

The false alarm rate tends to increase with the
threshold with rates included between 20% and
40% for the low thresholds and exceed 50% above
20 cm for the snow potential. However, Crocus gets
the best score in average because it remains
almost constant regardless of the threshold.

As for POD, the Heidke Skill Scores are also higher
on low thresholds than above 20 cm. Crocus
exhibits the best score for a threshold of 2 cm but
the poorest above 20 cm. For NWP models, the
snow potential exhibits a slight improvement
compared to a density of 100 kg.m™ for thresholds
between 1 and 5 cm.

3.2 Spatial variability

The averaged scores of section 2.1 are expected to
depict the mean behaviour through French
Northern Alps but they can dissimulate strong
disagreements between stations as the spatial
variability of snowfall is known to be high. To show
an example of variability, Figure 4 represents the
same scores as Figure 3 for 2 forecast products but
without averaging over 10 resorts. Crocus is shown
in red and AROME with 100 kg.m? density in green
and each line corresponds to one resort.

Crocus gets a lower variability of the frequency bias
between resorts but this variability is higher for
other scores and increases with the threshold. The
large variability of AROME frequency bias skill
between 0.5 and 2.1 over ski resorts means that its
high horizontal resolution make the skill of the
forecasts more heterogeneous.

Elevation differences between AROME grid cells
and ski resorts only partly explain the variability of
observed skill score. Indeed, the highest frequency
bias and false alarm rate for the high threshold
represents Saint Frangois Longchamp ski resort
with very strong overestimations of snowfall by
AROME, while Crocus gets a lower underestimate
score. This AROME trend may be due to model grid
cell effects, which may overrate orographic effects
on this specific area.

La Plagne resort is represented by the full line with
black dots on Figure 4 for AROME and Crocus. The
corresponding results are more detailed in next
section.
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Figure 3 : Skill scores of 24h HS for all products, 10-resorts average at 30h lead time as a function of HS
threshold (ARP=ARPEGE ; ARO=AROME ; AS=Statistical calibration ; PN=Snow Potential ; CRO=Crocus)
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Figure 4: Skill score of 24h HS for Crocus and AROME models over 10 ski resorts (10 lines) at 30-Hours
lead time as a function of HS threshold. La Plagne resort is represented with full line and black dots.
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Figure 5: HS scatter plot between SAFRAN, ARPEGE, AROME, CROCUS, ARPEGE SNOW POTENTIAL,
AROME SNOW SNOW POTENTIAL models and La Plagne observations at 30-Hours lead time. On the right
column, supervised forecast at 1800 meters and Crocus over winter 2018.

3.3 Scatter plot example

If the previous scores can summarize the forecast
skill over a long time period and to compare the skill
between products and resorts, it is also useful to
compare forecasts and observations at the event
scale to get a better idea of the magnitude of the
errors. Figure 5 shows a scatter plot example for
each forecast products at the resort of La Plagne at
1970 meters a.s.l.. Some results previously
described can also be seen here such as the
negative bias of Crocus and the strong positive bias
of the snow potential for the highest snowfalls. Note
that the 150 to 200 m elevation difference between
the NWP models grid cells and the station may
partly explain the bias. For this resort the less
biased product is SAFRAN with a 100 kg.m™ snow
density. Crocus outputs exhibit a higher linear
correlation with observations (0.81) than ARPEGE
and AROME outputs regardless the density
assumption. It means that it explains better the
variance of HS. This behaviour is also obtained in
average for the 10 ski resorts (not shown).

The last figures on the right of Figure 5 show a
comparison between the forecasters predictions at
1800 meters and Crocus output for La Plagne
during the winter 2018 in order to compare these
products over the same period. This figure shows
that Crocus gets a better coefficient of
determination, but with an important negative bias.
Forecasters predictions show a  positive bias
although it is given at 1800 meters, 170 meters
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lower than the resort elevation. A negative bias
would be expected with such a positive elevation
difference. This positive bias is consistent with the
biases of the products the most commonly used by
the forecasters (ARPEGE and AROME precipitation
amounts with assumptions on density).

4. DISCUSSION, CONCLUSION, OUTLOOK

4.1 Learnings of this study

Several forecast products of 24h HS were
compared for 10 ski resorts of Northern French
Alps. They exhibit a high variability of skill
depending on the considered height threshold and
on the ski resort.

The improvement expected by the high resolution
of the AROME system turned to increase the spatial
variability of the skill and it results in some resorts
with very strong biases. The fact that SAFRAN
outputs are better than ARPEGE outputs
demonstrate that a spatial aggregation of NWP
models is still required to improve the reliability of
the forecasts at the mountainous area local scale.

The improvement expected by the physical
representation of snow on the ground in the Crocus
snowpack model turned to  significantly
underestimate new snowfall amount at all ski
resorts and direct output from SAFRAN with a
density of 100 kg.m™® are less biased and with
similar  correlations and skill scores. This
disappointing result encourages to better identify if
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this problem is due to incorrect physics in the model
(falling snow density, compaction) or to
compensation errors with precipitation amount. This
variable was not evaluated here because the
measurements of solid precipitation are highly
uncertain (Kochendorfer et al, 2017). New
evaluations of snowfall density and of compaction
laws are therefore required on sites where
measured precipitation are available (Krinner et al,
2018). Various formulations of these processes are
already implemented in the Crocus model and can
be easily tested (Lafaysse et al, 2017).

Finally, the very simple linear adjustment between
SAFRAN-Crocus forecasts and observations
demonstrate that statistical calibrations can be
useful to significantly reduce model biases. More
sophisticated methods are available in the literature
(Gneiting et al., 2014) and could be applied both on
deterministic forecasts or on ensemble forecasts of
HS. Our first comparisons with raw forecasts
suggest that such unbiased automatic forecasts
should be able to reach or outperform the skill of
supervised forecasts but with a more extended
spatial coverage (at all altitudes).

4.2 Required extensions

The skill of forecasts usually decrease with lead
time (Vernay et al, 2015). This is also the case for
the products of this study but the results were not
presented here. The main behaviours (main biases,
threshold and spatial dependencies) are also valid
at longer forecast lead times. A spatial extension of
the evaluations over all French massifs will be
required for operational purposes. A higher number
of ski resorts would also be useful for more robust
evaluations and to investigate  possible
dependencies of the skill with elevation.

Finally ensemble forecasts are also available for all
the automatic products considered in this study:
PE-AROME for AROME (Bouttier et al, 2016),
PEARP for ARPEGE (Descamps et al, 2014) and
PEARP-S2M for the S2M chain (Vernay et al,
2015). If such ensemble systems are expected to
help accounting for the uncertainty of the forecast
products, preliminary results demonstrate that
significant biases of the ensemble versions of the
systems compared to the deterministic ones lead to
deteriorate the skill scores. These biases are
mainly due to the different horizontal resolutions of
the ensemble NWP models compared to their
deterministic configuration, and this issue has to
been investigated for a better quantification of the
uncertainty of HS forecast.
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