
ANTICRACK NUCLEATION IN SNOWPACKS WITHOUT ASSUMING INITIAL DEFECTS:
MODELING DRY SNOW SLAB AVALANCHES

Philipp L. Rosendahl1,2,∗, Vera Lübke2, Philipp Weißgraeber1,3,∗

1 2ϕ, www.2phi.de, Darmstadt, Germany
2 Technische Universtität Darmstadt, Fachgebiet Strukturmechanik, Darmstadt, Germany

3 Robert Bosch GmbH, Corporate Research and Advance Engineering, Renningen, Germany

ABSTRACT: To improve modeling of slab avalanche release we propose a new mechanical snowpack model
and a novel criterion for anticrack nucleation. The model allows to analyze skier-loaded slopes as well as PST
experiments. We obtain closed-form analytical expressions for shear and normal stresses in the weak layer as
well as for the energy release rate of cracks, which are in very good agreement with finite element analyses.

In this work, a new conceptual understanding of the fracture initiation process of dry snow slab avalanches is
developed. It makes use of the coupled stress and energy criterion in the framework of finite fracture mechanics.
No assumption of initial flaw size is required. The initiation of defects and subsequent crack propagation is
covered by a single criterion containing both a strength of materials and a fracture mechanics condition.
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1. INTRODUCTION

The release of snow slab avalanches is preceded by
fracture processes within the snowpack (Schweizer
et al., 2016). A crack nucleates within a porous
and compressible persistent weak layer of faceted
crystals or hoar under the snow slab. It propagates
across the slope and creates a surface for the slab
to slide on. Based on stress and strength considera-
tions a stability index was proposed by Föhn (1987)
and improved by Jamieson and Johnston (1998). Mc-
Clung (1979) used a fracture mechanics model for
propagation of defects initiated by ductile shear fail-
ure. Chiaia et al. (2008) added the consideration of
energy balance to the modeling of shear failure.

A new understanding of weak layer collapse as the
snowpack failure mechanism was given by Heierli
et al. (2008). They introduced the anticrack model,
which additionally considers slope normal deforma-
tions. It provides physical explanation for “whumpf”
sounds often encountered in avalanche terrain. Cap-
turing crack propagation within the weak layer is un-
derstood as a key element of failure modeling (van
Herwijnen and Jamieson (2007); Gaume et al. (2015,
2017)). Mixed-mode interaction of shear and normal
stresses was studied by Reiweger et al. (2015). In-
spired by this criterion Gaume et al. (2017, 2018)
use numerical simulations to compute critical crack
lengths and dynamic anticrack propagation. The ef-
fect of snowpack layering on the fracture process
was considered by Reuter et al. (2015), Monti et al.
(2015) as well as Gaume and Reuter (2017).

A new in-situ experiment allowing for quantita-
tive analyses of the fracture properties of the snow
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slab was developed with the propagation saw test
(PST) (Gauthier and Jamieson, 2006; Sigrist and
Schweizer, 2007). The test provides insight into the
fracture processes in snowpacks. Benedetti et al.
(2018) proposed a beam model for stress-based
analyses of critical cut lengths. The results of PST ex-
periments were used to discuss shear fracture zones
(McClung, 2009) and to propose new methods for
estimating snowpack instability (Reuter et al., 2015).

Many of the above models use overly simplified
assumptions leading to incomplete representations
of deformation and stress fields. Important effects
such as the deformation of the weak layer are not
accounted for, although they were shown to be of
major importance (Reiweger and Schweizer, 2010).
None of the given models provides a comprehen-
sive picture of avalanche release as a unified failure
process which is controlled by overloading (strength)
and energy requirements of the crack (toughness).

In this work, we propose a novel model for the
nucleation of anticracks by means of a coupled stress
and energy criterion. To employ this criterion a new
comprehensive snowpack model is proposed which
allows for closed-form computation of the normal and
shear stress in the weak layer as well as the energy
release rate of cracked weak layers. The model is
then used to evaluate the new coupled stress and
energy failure criterion for anticrack nucleation in
snow packs without assuming initial defects.

2. MECHANICAL SNOWPACK MODEL

Consider the snowpack depicted in Fig. 1a. Following
the idea of Heierli et al. (2008) the snow slab is mod-
eled as a plane strain Timoshenko beam with out-of
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Figure 1: Snowpack modeled a) as a beam on an elastic founda-
tion of an infinite set of shear and compressive springs b) using
Timoshenko beam kinematics.

plane thickness b. In the present model an elas-
tic foundation of an infinite set of smeared springs
is added representing the weak layer. The springs
possess compressive kn and shear stiffness kt.

Displacements of the snow slab are described by
a set of linear differential equations with constant co-
efficients. The horizontal displacement u is obtained
from

EAu′′(x) − ktu(x) + qt = 0, (1)

where the extension stiffness EA is composed of the
Young’s modulus E and the snow slab cross section
A = hb. kt = Gwlb/t is the weak layer shear stiffness
with the shear modulus Gwl = Ewl/(2(1 + ν)) and
qt = ρghb sin(ϕ) is a constant distributed horizontal
load in x-direction.

The vertical beam deflection w and the rotation of
the beam cross section ψ are coupled through (e.g.
Hetenyi, 1946; Timoshenko and Goodier, 1951)

EIw′′′′(x) − kn

κGA
w′′(x) +

kn

EI
w(x) =

qn

EI
, (2)

ψ(x) = − EI
κGA

w′′′(x) +
(

EI kn

(κGA)2 − 1
)

w′(x), (3)

where κ = 5/6 is the shear correction factor for rect-
angular cross sections, I = bh3/12 the moment of
inertia, kn = Ewlb/t the weak layer compressive stiff-
nesses and qn = ρghb cos(ϕ) a constant distributed
vertical load in z-direction.

The general solution of the ODE (1) for the hori-
zontal displacement is

u(x) = c1 cosh(μx) + c2 sinh(μx) +
qt

kt
, (4)

where μ =
√

kt/(EA) is the corresponding eigen-
value and c1 and c2 are constants which must be
determined from boundary conditions. The solution
of the coupled ODEs (2) and (3) is of exponential
type as well. Depending on the material parameters,
the eigenvalues of this solution may become real or
complex. The respective solutions with eigenvalues
λ1,2 and λ∗1,2 are

w(x) = c1 cosh(λ1x) + c2 sinh(λ1x)

+ c3 cosh(λ2x) + c4 sinh(λ2x) +
qn

kn
,

(5)

a) b) c)

1 2 21 1 2 3 4

Figure 2: Snowpack configurations assembled from beam seg-
ments with boundary and transmission conditions: a) PST b) skier
load on intact weak layer c) skier load on weak layer with crack.
Weak layer cracks are modeled by removing support of the beam.
For the sake of clarity only vertical loads are shown.

for real eigenvalues, when knEI ≥ 4(κGA)2, and

w(x) = eλ
∗
1 x (c1 cos(λ∗2x) + c2 sin(λ∗2x)

)
+ e−λ

∗
1 x (c3 cos(λ∗2x) + c4 sin(λ∗2x)

)
+

qn

kn
,

(6)

for complex eigenvalues, when knEI < 4(κGA)2.
Again, the constants c1 to c4 must be determined
from boundary conditions.

Snowpack configurations can be assembled from
beam segments with elastic foundation or without
(kt = kn = 0, Heierli’s solution). Modeling a propaga-
tion saw test requires two beam segments as shown
in Fig. 2a. The left part of the snow slab rests on an
elastic foundation representing the intact weak layer.
The right part is a cantilever beam where cutting has
removed the weak layer support. The slab is loaded
by its own weight qn and qt. Free left and right ends
require vanishing section forces and moments. At the
transition between the unsupported and supported
segments C0-continuity of displacements, cross sec-
tion rotation and section forces and moments is en-
forced. When concentrated forces (skier load) are
to be considered (Figs. 2b and 2b), the discontinu-
ity of normal and transverse shear forces must be
accounted for.

The boundary and transmission conditions for the
respective load case provide a linear system of equa-
tions with up to 18 unknown constants. The system
can be solved easily (<1 ms on a standard desktop
PC) using common mathematical toolboxes. Closed-
form solutions for u, w and ψ can be given.

Because of the simple weak layer kinematics,
known slab displacements automatically yield weak
layer compressive and shear stresses according to

σ(x) = −kn

b
w(x), τ(x) =

kt

b
u(x). (7)

Further, denoting the total potential energy as Π the
energy release rate

G = − dΠ
bda
= GI + GII, (8)

for a weak layer crack of length a is given by

GI =
kn

2b
w(a)2, GII =

kt

2b
u(a)2, (9)

where w(a) and u(a) correspond to displacements
at the crack tip (Krenk, 1992). That is, the energy
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Figure 3: Normal and shear stresses from combined skier and
slab weight loading. Comparison of present model (blue) and
Föhn (1987) model (red) to FEA results (circles). The following
material and geometry parameters are used: l = 5 m, b = 1 mm,
h = 200 mm, t = 10 mm, ρ = 200 kg/m3, Eslab = 5 MPa, Ewl =

0.15 MPa, ν = 0.25, qn = qt = 0.39 kPa, Fn = Ft = 0.78 N.

release rate can be interpreted as the energy stored
in the (shear and normal) springs at the crack tip.

3. VALIDATION OF THE MECHANICAL SNOW-
PACK MODEL

The present model provides slab displacements,
weak layer stresses and energy release rates for
cracks within the weak layer as closed-form analytical
expressions. In order to validate the model, stresses
and energy release rates are compared against de-
tailed plane strain finite element analyses (FEA) and
existing models. To investigate the capabilities of
the present model we compute the fracture tough-
ness at the measured crack onset in propagation
saw tests (PST) for a comprehensive set of 93 field
experiments provided by Gaume et al. (2017). For
the following considerations, the Young’s modulus is
calculated from density ρ using the empirical relation
of Scapozza (2004) in plane strain conditions.

Fig. 3 shows weak layer compressive and shear
stresses for combined skier and gravity loading cal-
culated using FEA, equations given by Föhn (1987)
and the present model. Föhn’s solution for a force
acting on an elastic halfplane and the present model
both show a good agreement with the FEA results.

Fig. 4 shows energy release rates for PSTs in flat
terrain. The anticrack model by Heierli (2008) and
the present model are compared against FEA results
for different weak layer thicknesses. FEA energy
release rates are approximated using the central
difference quotient

G(a) = − dΠ
bda
≈ −ΔΠ(a + δ) − ΔΠ(a − δ)

b 2δ
, (10)

where δ is a small crack increment and ΔΠ is the
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Figure 4: PST energy release rate G in flat terrain. Comparison
of present model (blue lines), Heierli (2008) model (red line) and
FEA results (gray circles). Both models agree well with FEA data
for short crack lengths and stiff (i.e. thin) weak layers. While
(Heierli, 2008) cannot reproduce varying weak layer properties,
the present model exhibits excellent agreement with FEA results.
The following material and geometry parameters are used: l =
1200 mm, h = b = 300 mm, Ewl = 0.15 MPa, ν = 0.17, ρ =
240 kg/m3 and Eslab calculated according to Scapozza (2004).

difference in total potential energy between cracked
and uncracked configuration. A crack is introduced
removing all weak layer elements on the length a.

Heierli’s model assumes a rigid weak layer which
corresponds to a beam resting on an indefinitely thin
weak layer yet permitting beam deflections. With
thicker weak layers, the weak layer compliance in-
creases and Heierli’s assumption of rigidity leads to
increasing discrepancies. This is reflected in Fig. 4.
For short cracks and thin weak layers Heierli’s model
agrees well with FEA results. However, the energy
release rate of soft weak layers and long cracks is
only predicted correctly by the present model which
accounts for weak layer deformation.

Fig. 5 correlates model predictions for the weak
layer fracture toughness to data obtained using de-
tailed FEAs and Eq. (10). Fracture toughnesses
Gc are determined from critical cut lengths ac mea-
sured in 93 PST field experiments. Because Heierli’s
model neglects weak layer deformations, it under-
estimates the fracture toughness significantly (see
Fig. 4). It neither shows a satisfactory slope of the
linear regression nor a reasonable coefficient of de-
termination R2. Predictions of the present model are
found within a narrow range around the one-to-one
line.

4. FINITE FRACTURE MECHANICS CRITERION
FOR SKIER-TRIGGERED ANTICRACKS

Typically it is assumed that the formation of defects
occurs because of other mechanisms (stress and
strength) or even on different time scales (McClung,
1979) than propagation of cracks in the slope (frac-
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Figure 5: Modeled fracture toughness Gc versus fracture tough-
ness obtained using FEAs for material properties determined in
93 field PSTs. Comparison of data points, linear regression and
coefficient of determination R2 of present model (blue) and Heierli
(2008) model (red). No data set showed the slab touching the
substratum.

ture mechanics). Fracture mechanics approaches
are restricted to pre-existing cracks and hence can-
not be used to model crack initiation. The question
of critical crack sizes required for instable crack prop-
agation arises and if load-induced defects which are
too small to propagate persist in the snowpack.

This can be resolved by simultaneously requiring
both the weak layer to be overloaded in terms of
stress and to have sufficient energy available for the
formation of new crack surfaces. In general form this
criterion can be given as:⎧⎪⎪⎨⎪⎪⎩ f (σ, τ) ≥ 1 on Δa prior to fracture,

G(Δa) ≥ Gc at fracture.
(11)

This so called coupled stress and energy criterion is
known in the framework of finite fracture mechanics
and has proven useful for studying crack initiation
in many engineering structural situations with brit-
tle materials (Weißgraeber et al., 2016). It provides
critical loads as well as the size of initiating cracks
and thus does not require the assumption of initial de-
fects. The concept requires only the two fundamental
material properties strength and fracture toughness
as input. Similar thoughts were presented by Chiaia
et al. (2008) for snowpack shear failure. The prin-
ciples of the coupled criterion are shown in Fig. 6.
Here, both conditions which must be fulfilled simul-
taneously are shown schematically for the case of a
skier loaded snowpack.

Using the coupled criterion Eq. (11) requires a
strength hypothesis. To account for mixed-mode
interaction of shear and normal stress a quadratic
stress interaction is considered:

f (σ, τ) =

√(
σ

σc

)2

+

(
τ

τc

)2

≥ 1, (12)

overloaded weak layer

σ

energy release suffices

G

f (σ , τ) ≥ 1 G ≥ Gc

Figure 6: Evaluation of the coupled stress and energy criterion
for the case of skier loaded snowpack. On the left the condition
of a locally overloaded weak layer and on the right the second
condition of sufficient energy release rate are shown. The stress
condition has the effect of an upper bound on possible nucleated
cracks. Whereas the energy condition provides a lower bound on
the crack lengths as short cracks do not release sufficient energy.

where τc is the effective shear strength according to
Reiweger et al. (2015) which depends on the com-
pressive stress σ.

The second condition considers the energy re-
lease rate of finite cracks G. It can be obtained by
integrating the differential energy release rate G over
the finite crack length Δa or by evaluating the corre-
sponding change of the total potential ΔΠ:

G = 1
Δa

∫
Δa
G da = − ΔΠ

bΔa
= GI + GII. (13)

In this work, the change of the total potential is
evaluated by means of the crack opening integral.
The change of total potential equals the work done
by stresses on crack flanks when reduced quasi-
statically to zero (which corresponds to crack open-
ing). This can be done for both mode I and mode II
contributions and the following relations of the incre-
mental energy release rates are obtained:

GI =
1

2bΔa

∫ l+Δa
2

l−Δa
2

knw1(x) w0(x) dx,

GII =
1

2bΔa

∫ l+Δa
2

l−Δa
2

ktu1(x) u0(x) dx,

(14)

where indices 0 and 1 refer to uncracked and cracked
configurations, respectively.

By using Eqs. (12) and (13) in the coupled stress
and energy criterion Eq. (11) one obtains a set of
two implicit equations with two unknowns: the critical
load and the finite size of the initiated defect. This
set of equations can be readily solved with standard
numerical toolboxes (with computation times <5 ms).

Results of a parametric study of this coupled stress
and energy criterion are shown in Fig. 7. A snowpack
loaded by its weight and an additional line load (rep-
resenting e.g. a skier) is considered and the critical
additional load which causes anticrack nucleation
is calculated. The dependence of this load on the
height of the superstratum is shown. With increasing
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Figure 7: Critical snowpack loading and size of initiated anticracks
as a function of slab height. Thicker slabs transfer concentrated
loads more uniformly allowing for larger point loads. Above a
certain thickness, failure is dominated by the slab’s own weight
reducing admissible additional loads until self release occurs. The
following material and geometry parameters are used: t = 5 mm,
Eslab = 5 MPa, Ewl = 0.15 MPa, ν = 0.25, ρ = 200 kg/m3, l = 25h,
Gc = 3.0 J/m2 (median of PST field data used in present work).

slab thickness the load bearing capacity increases
as the increasing stiffness of the slab leads to a
more uniform load distribution. However, at a cer-
tain slab thickness the effect of the increasing slab
weight outweighs the former effect and the capac-
ity to bear additional load reduces. At a threshold
thickness self release without additional load occurs.
The results are given for three different slope an-
gles yielding decreasing critical loads on steeper
slopes. In the subplot below sizes of nucleated anti-
cracks are shown agreeing well the estimates given
by Schweizer (1999) or Gaume et al. (2017). For
the case of self-release the length of the nucleated
cracks tends to infinity as no zone of local overload-
ing exists. Critical load predictions of the present
model could be validated using rutschblock test data.
To this end, we provide estimates for load-equivalent
rutschblock scores assuming a skier weight of 85 kg.

5. CONCLUSION

The present analysis shows that the consideration
of weak layer deformations is crucial in the mechan-
ical modeling of snowpacks. Our model provides
closed-form solutions for weak layer stresses and
energy release rates which are in very good agree-
ment with finite element results. In combination with
PST field tests it allows for reliably determining the
weak layer fracture toughness. Within the present

framework layered snow slabs can be considered
using laminated beam theory in future works.

The presented coupled stress and energy failure
criterion demonstrates that both stress and energy
are necessary conditions for the initiation of cracks. It
provides a physically sound explanation for anticrack
nucleation without requiring assumptions on initial
defects and predicts admissible skier loads.
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