
Figure 9: Estimates on ρC �
D vs. front velocity Uf .

Note the log-log-scale. Colors indicate the air temper-
ature. Lines may give a kind of upper envelope for the
wet- and dry-snow events. Inset shows similar data
adapted from (Sovilla et al., 2008, Fig. 13) as dots.

velocity, h the flow height, A the projected area, and
ρ is the avalanche density. The coefficients CD de-
scribes the effect due to the dynamic pressure and fs
the contribution by the static pressure. Both coeffi-
cients may depend on the flow properties themselves
and on the geometry of the setting. C �

D represents in
this case a lumped drag factor. Figure 9 shows es-
timates on the combination of flow density and drag
factor C �

D based on observed maximum values of the
impact pressure at five different pressure sensors with
a size of 1.2× 0.6 m2 and on the front velocity. These
values give only a rough estimates as maximum pres-
sures did not necessarily occur at the front and the
velocity within in the avalanche may differ from the
front velocity. Therefore, the velocity here should only
be regarded rather as an indication of the flow state.
However, the data give an impression what could be
expected. As a reference the plot shows also two ex-
ample graphs according to (5), using estimates on the
typical flow depth. The upper line may give an approx-
imation for wet snow and the lower one for dry snow
avalanches. The shown trends are similar to those
presented by Sovilla et al. (2008) in their Fig. 13.

3.5 Forces on transmission line cables

In the early years of the Ryggfonn test site a trans-
mission line assembly was mounted in the lower part
of the track (Figure 10). The assembly was destroyed
by an avalanche in 1990 (see Figure 3). Nonetheless,
a limited set of data was obtained during that period.
These data are of interest in respect to construction of
power lines or cable ways, which could be hit by the
powder cloud of an avalanche. They also give some

Figure 10: Transmission line assembly (photo NGI).

indication about the structure of the powder cloud. Fig-
ure 11 plots the normalized maximum tension-force
vs. height above ground, where F1 is the tension force
at 8 m, F2 at 12 m and F3 at 16 m above ground. The
graphs show an obvious decrease in the tension force
with increasing height about ground, which suggests
a similar decrease in the factor ρCD (cf. equation (5)).
An exponential decrease might be a reasonable first
guess, that is

F (h)
F (h0)

≈ e�(e c �h ) ; (6)

where h0 is a reference height and ec is the rate fac-
tor, which depends on the velocity. Generally, the de-
crease with height is less pronounced with increasing
velocity—the forces become more uniform across the
flow height. Only two wet snow avalanches in which
cases the powder cloud was rather diluted (i.e. F1 was
rather low) fall out of this velocity trend and showed
more uniform behavior but low forces.

Figure 11: Normalized maximum tension-force vs.
height above ground. The dashed lines show expo-
nential fits and the color indicate the front velocity Uf .
Note the log-scale.
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3.6 Avalanche probability and release height

In avalanche hazard assessment, the probability of an
avalanche release in a given path is an important pa-
rameter. It is widely accepted that the 3-day new snow
depth is an important indictor parameter. However, the
conditional probability, P(A|HNW3d ) (i.e. the probabil-
ity of an avalanche for a given HNW3d ), may vary from
path to path and differs considering a whole region.
It probably also varies for different climatological re-
gions. Figure 12 a) shows examples of P(A|HNW3d )
for a selection of paths from different regions.

Furthermore, avalanche models require information
on the expected fracture depth. A common procedure
is to use the 3-day new snow depth for a given retour

Figure 12: a) Cumulative probability distribution of the
conditional probabilities P(HNW3d |A) for different re-
gions and paths: data adapted from Chamonix and
Bessans, France (Meunier et al., 2005); Zouz, Switzer-
land (Stoffel et al., 1998); Gothic (RBML), Colorado,
(courtesy of Billy Barr); Grasdalen region and Rygg-
fonn path, Norway. b) Comparison between observed
and simulated P(HNW3d |A) for the Ryggfonn path.
Lines show the corresponding fits. The inset shows
the probability distribution of the expected fracture
depth.

period and correct for the slope angle (c.f. Salm et al.,
1990; Gruber et al., 2002). However, observations,
amongst otters from Ryggfonn, suggests using only
3-day new snow sum may underestimate the actual
fracture depth. Figure 12 b) shows an approach of us-
ing a simple probabilistic model for avalanche release
based on Mohr-Coulomb fracture criteria that uses the
total snow depth and 3-day new snow depth distribu-
tion as input parameter. The inset depicts the corre-
sponding probability distribution of the fracture depth.

4 CONCLUDING REMARKS

Avalanche risk management requires knowledge of
runout distances and the corresponding return periods
as well as intensity measures. It becomes more and
more popular to use numerical models to obtain those
required information also in respect to probability dis-
tributions, e.g. Eckert et al. (2010). Despite of Perla’s
rule of thumb “The only rule of thumb in avalanche
work is that there is no rule of thumb” (McClung and
Schaerer, 2006), it is important to have reference data
and/or empirical relations that help to evaluate the per-
formance of those computational runout models, es-
pecially in cases where field data are insufficient. A
popular empirical relation is certainly the so-called α-
β model by Lied and Bakkehøi (1980), which relates
the runout angle, α, to the average inclination of the
path, β. In this paper now, selected observations from
the full-scale avalanche test site Ryggfonn, Norway,
are presented and in part compared with observa-
tions from other locations to provide further reference
data. Some trends can be observed. These trends
can provide benchmarks for the evaluation of recently
presented approaches of multivariate parameter opti-
mization for avalanche models (Fischer et al., 2015;
Eckert et al., 2010).

These empirical data are also helpful for practition-
ers while delimitating hazard zones.

Although costly and difficult to perform, full-scale
avalanche tests are still necessary to obtain in-depth
insight in the flow behavior of avalanches and its de-
pendency of the ambient conditions. These experi-
ments provide also reference data for numerical mod-
els as well as references for small-scale test to un-
cover scaling behavior. But also well documented ob-
servation from (natural) avalanches in regular paths
are desirable to obtain a wider variety of topographic
settings.
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