
 

 

A NEW MECHANICAL FRAMEWORK TO INTERPRET WEAK LAYER  
AND SLAB FRACTURE IN THE PROPAGATION SAW TEST 

Lorenzo Benedetti1,2*, Jan-Thomas Fischer1 and Johan Gaume3,4 

1BFW – Austrian Research Centre for Forests, Department of Natural Hazards, Innsbruck, Austria 
2CIMNE – International Center for Numerical Methods in Engineering, Barcelona, Spain 

3WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland 
4EPFL –  École Politechnique Fédérale de Lausanne, Lausanne, Switzerland 

 

ABSTRACT:  This work aims to provide a mechanical model for the Propagation Saw Test (PST) based 
on the Euler-Bernoulli beam, allowing a description of the slab and weak layer stress states in the quasi-
static regime. We assume an elastic-perfectly brittle model as constitutive law for both the snow slab, 
which can fracture for high tensile stresses, and the weak layer, which can fail under compressive or 
shear stress. The stress evolution is mainly determined by the crack length, which is initially created by 
the saw and, subsequently, increases due to weak layer failure in case of self-propagation. Thanks to the 
proposed method, the two main test outcomes -full propagation (END) and slab fracture (SF)- can be 
found as observed in field experiments. Moreover, the PST parameters can be studied separately, provid-
ing a powerful tool to understand the dependence of the outcome from numerous quantities in the test, 
both geometrical and mechanical. 
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1. INTRODUCTION 

In recent years, the Propagation Saw Test has 
drawn attentions being relatively easy to perform 
and providing useful insights for the evaluation of 
snow instability. Initially, this in-situ technique has 
been developed by Sigrist and Schweizer (2007) 
and Gauthier and Jamieson (2008) and, in the fol-
lowing years, numerous measurement were per-
formed by van Herwijnen and Jamieson (2005) 
utilizing high speed PTV (particle tracking veloci-
metry). The results showed useful insights into the 
intricate relationships between the propagation of 
weak layer collapse and the upper slab defor-
mation as well. The phenomenon has also been 
studied using Linear Elastic Fracture Mechanics 
theories by Heierli et al. (2008) while Schweizer et 
al. (2014) introduced an ad-hoc mechanical mod-
el. More recently, Gaume et al. (2015) employed 
the Discrete Element Method as a numerical tool 
to simulate the evolution of the PST and its out-
come. 

This work aims to provide a simple quantitative 

tool for an exhaustive mechanical interpretation of 
the PST by means of well-known mathematical 
models in the field of continuum mechanics.  

To begin with, we analyze the different force 
schemes in the PST in order to construct a me-
chanical model based on the Euler-Bernoulli beam 
in the quasi-static regime. With the assumption of 
elastic-perfectly brittle material we provide the fail-
ure conditions for the snow slab, subjected to ten-
sile stresses, and for the weak layer, which 
considers the effect of compressive and shear 
loading. We derived the functions representing the 
stress evolution with respect to the crack length, 
which is artificially created by the saw and, in case 
of self-propagation, lengthened due to weak layer 
failure. The results for a realistic snowpack high-
light the capability of the model to detect full prop-
agation (END) and slab fracture (SF) outcomes as 
observed in field experiments. 

2. PST BEAM MODEL 

The PST is conducted with an isolated volume of 
snow of 30 centimeters of width and about 1-2 
meters in length (Figure 1). We investigate the 
case of a snow slab (of total length ltot) on top of a 
rigid bed, with a weak layer in between, on a slope 
of angle ψ. 
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Fig. 1 : Propagation Saw Test setup and possible 
outcomes (from Gauthier and Jamieson, 
2008) 

First of all, we describe the sequence of events 
that takes place in the PST (Figure 2). At the be-
ginning of the test, increasing the cut length l in-
creases the load on the newly formed cantilever 
beam and on the reduced area of the weak layer, 
being both naturally subjected to the weight of the 
snow. The tip of the upper slab displaces -likewise 
vertically and horizontally- since the gravitational 
force is applied in a slanted direction with respect 
to the axis of the volume of snow (Scheme I).  

The length LIC is the value of l at which point we 
observe the first contact between the tip and the 
rigid bed and it is computed as: 
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where E is the elastic modulus of the snow, I is the 
second moment of inertia of the upper slab cross 
section, hw is the thickness of the weak layer and 
qv is the vertical distributed load on the structure 
(measured in N/m). In this case, only the tip of the 
cantilever rests on the rigid bed, resulting in a 
hinged constrain, where the beam cross section 
can only rotate (Scheme II). 

Then, following the increase of l, the slab bends 
back due to its own weight and rests having verti-
cal cross section to the slope direction. At this 
point, not only any vertical movement is re-
strained, but also the rotation is forbidden. The cut 
length l, at which this condition is recognized, is 
called length of full contact and it is denoted by LFC 
as: 
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When sawing is continued, the contact zone be-
tween the two slabs increases and the length be-

tween the saw and the first touching point remains 
constant, being equal to the full contact length LFC, 
for equilibrium requirements. Finally, the beam is 
now behaving as a double clamped structure, with 
fixed length and, consequently, bending moment 
on the cross sections. In addition, the weight of the 
snow volume applied to the rigid bed causes fric-
tion effects which are exerted through the surfac-
es, modifying, hence, the horizontal equilibrium of 
forces (Scheme III). 

In order to evaluate the stresses in the snowpack, 
it is required to solve the following differential 
equation for the Euler-Bernoulli beam: 
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in the function of vertical displacement v(x). Simi-
larly, the horizontal displacement u(x) is the solu-
tion of the second order differential equation: 
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Each force scheme provides the necessary 
boundary conditions required for the solution of 
the differential equations. Once the vertical and 
horizontal displacement functions are known, it is 
possible to calculate the stresses in the various 
layers of the snowpack. Concerning the upper 
slab, we assume an elastic-brittle fracture constitu-
tive law, which means that the maximum tensile 
stress in the vertical cross section will provoke 
failure and detachment of the snow volume as 
soon as it reaches its threshold value. The bend-
ing moment M and the horizontal force N are 
combined in the Navier’s formula to compute the 
maximum tensile stress in the upper slab: 
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where b is the width and h is the height of the up-
per slab. Likewise, assuming a rigid interface be-
tween the layers, the gravitational forces are 
transmitted to the weak layer and, with equilibrium 
arguments, we are able to compute the bending 
moment Mw, the normal force Nw and the shear 
force Tw. We assume an elastic-brittle behavior for 
the weak layer as well, which can reach failure for 
both compressive or shear stress. These values 
are calculated as: 
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Regarding the maximum allowed stress values, 
the compressive strength of the weak layer is set 
to 2.5 kPa and the shear strength to 0.5 kPa. In-
stead, in the upper slab, the elastic module E is 
given by the expression presented in the work of 
Scapozza and Bartelt (2003) as function of the 
density: 

ሻߩሺܧ ൌ 1.873 ∙ 10ହ exp଴.଴ଵସଽఘ  (9) 

and the tensile strength is taken from Sigrist 
(2006): 

௬௧௦ߪ ൌ 2.4	 ∙ 10ହ 	ቀ ఘ

ଽଵ଻
ቁ
ଶ.ସସ

 (10) 

The stresses in the upper slab and in the weak 
layer can vary over different orders of magnitude. 
Consequently, we will consider the stress ratio 
with respect to their threshold, which means that 
failure will be reached for stress ratio values equal 
to 1.0 to offer a better understanding of the frac-
ture lengths role and the processes therein. 

The first case in analysis considers a density of 
the upper slab equal to 280 kg/m3 as presented in 
Figure 3. The shear stress ratio Ss

w in the weak 
layer reaches the unit value (i.e. fails) just after 11 
centimeters of cut length and, at that point, crack 
propagation starts. On the other side, the upper 
slab touches the rigid bed at 75 centimeter and the 
tensile stress ratio Ss

t changes from a quadratic to 
a linear growth. This allows the upper slab to re-
main under the stress threshold, so this case 
comes up to be full propagation (END) as the 
crack reaches the end of the specimen. 

 

Fig. 3 : Stress evolution for the case of upper slab 
density ρ equal to 280 kg/m3, with a full 
propagation (END) result. 

The case of 230 kg/m3 density is depicted in Fig-
ure 4. Here, the shear stress in the weak layer is 
responsible for the initial onset of crack propaga-
tion, for a 45 centimeters cut. Subsequently, when 

the length of the crack is 166 centimeters long, the 
upper slab fractures under tensile stress. This de-
scription corresponds to a slab fracture after prop-
agation case and we denote it with SFa. 

 

Fig. 4 : Stress evolution for the case of upper slab 
density ρ equal to 230 kg/m3, with a slab 
fracture after propagation (SFa) result.  

In the following Figure 5, the upper slab density is 
set as 180 kg/m3. At first, the upper slab fails at 59 
centimeters, causing the reduction of the load in 
the weak layer. The test is concluded, since no 
propagation is possible at this point. The slab frac-
ture before propagation is denoted by SFb. 

 

Fig. 5 : Stress evolution for the case of upper slab 
density ρ equal to 180 kg/m3, with a slab 
fracture before propagation (SFb) result.  

Finally, the propagation length is computed for the 
density range 50 to 300 kg/m3. Figure 6 shows the 
resulting plot, where we highlighted the expected 
test outcome. In relation to soft slabs, up to 191 
kg/m3, the slab fractures before any crack propa-
gation is engaged in the weak layer (SFb). Then, 
as the upper slab becomes stronger than the weak 
layer, for the range 191-249 kg/m3, slab fracture 
after propagation (SFa) is predicted. As we previ-
ously observed, the propagation length becomes 
bigger than total length of the specimen (i.e. 2 me-
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ters). When the density is higher than 249 kg/m3, 
the model predicts full propagation (END). 

 

Fig. 6 : Signed propagation length with respect to 
the density. The slab fracture before prop-
agation (SFb), slab fracture after propaga-
tion (SFa) and full propagation (END) 
results are highlighted in the plot. The total 
length of the specimen is 2 meters. 

This mechanical description of the PST is an ad-
vantageous tool for the study of different parame-
ters throughout the test. The analytical solutions 
can be used to evaluate the sensibility of the mod-
el, varying independently each quantity of interest. 

4.  CONCLUSIONS 

This work presented an analytical framework for 
the mechanical interpretation of the Propagation 
Saw Test. The Euler-Bernoulli beam theory has 
been applied to the various stages of the PST, 
underlining the stress evolution as function of the 
saw cut length. Moreover, the full propagation 
(END) and the slab fracture (SFa, SFb) outcomes 
have been linked with quantitative results, through 
the computation of the propagation length. 
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