RAM PROFILES WITH SWISS PENETROMETER, AVATECH SP2 PROBE AND HAND TESTS. COMPARISON OF THE HARDNESS PROFILES OBTAINED FROM ON SITE DETECTIONS IN THE ITALIAN ALPS DURING THE 2015-2016 SEASON

Flavio Berbenni¹, Igor Chiambretti²*, Flavio Papetti³, Raviglione Massimo⁴** e Barberis Michela⁵

¹ARPA Lombardia Centro Nivometeorologico di Bormio - ITALY
²AINEVA, Trento - ITALY
³Papetti - Pianificazione, Sviluppo e Difesa del Territorio, Piazza Brembana – ITALY
⁴RocK and Snow Engineering, Tollegno – ITALY
⁵MountainS Working sas, Tollegno – ITALY

ABSTRACT: In snowpack observations, the hardness profile of snow cover is determined by a ram profile and a hand test which are performed according to codified and standardized methods. Both tests have the purpose to measure the hardness of the snowpack layers. The ram profile is made, regardless snow profile analysis, using the Swiss penetrometer or the new Avatech digital penetrometer probes (model SP2). The ram profile typically describes the hardness of each measurable layer with the recorded resistance to vertical penetration met by the probe tip during insertion. On the contrary, the hand test determines the single-layer hardness during the snow profile analysis, as a function of the resistance to the horizontal penetration of the operator's hand or other objects according to an encoded insertion sequence. The proposed study, starting from the experiences of nivological detection performed in the Italian Alps during the 2015-2016 season, shows in practical terms the comparison between the hardness profiles obtained from ram profiles (ram penetrometer and Avatech SP2 probe - objective data) with those obtained by hand tests (more subjective data). The analysis doesn't so much aim to make a scientific comparison of the data obtained through different methods of measurement, as to illustrate the operational problems encountered and to explore the potential of a new instrument at disposal of the snow observers which will necessarily require the development of both new working methods and a new data usage.

KEYWORDS: ram penetrometer, avatech SP2, hand test, hardness profile

1. INTRODUCTION

This paper presents the research activities and the results obtained from the comparison among the different methods of detection of snow hardness. In particular, we have compared the results obtained from ram penetration tests, tests based on the Avatech SP2 probe and the hand test. The activity of data acquisition took place during the 2015-2016 season over the course of the regular nivological detection activities at various locations in the Italian Alps. After on-site data collection, a comparative analysis was performed in order to assess the convergence and overlap of data. The study ends with the evaluation of the analysis of the test results, the evaluation of the operational issues related to the running of the various tests and with some considerations about the use of new instruments and new technologies available for on-site detection and for processing snow and avalanche data.

2. SNOW HARDNESS AND EVALUATION TEST

Snow hardness is generally understood as the characteristic of the snowpack to withstand the
local deformations produced by a compressive stress acting in an almost vertical direction. The evaluation of hardness in snow surveys is particularly important because, being related to resistance, knowing a single layer hardness means being able to assess how that layer can withstand a compressive stress. In this regard, to define the trend of the snow hardness from the surface up to the ground or to a significant depth will require the evaluation of the overall resistance in the snowpack in order to verify if there are layers of "low - very low" or "high - very high" resistance which could become potential gliding plans.

It is possible to obtain hardness evaluation by using objective measurement methods which require the use of instruments and therefore a minimum subjective contribution of the human operator as well as subjective measurement methods in which hardness evaluation is mainly related to the experience and sensitivity of the operator (CAA 2008, 2014; Fierz et al, 2009; Green et al, 2010). For the specific case, as regards the objective methods, vertical penetration tests were performed with Swiss ram sonde and with Avatech SP2 probe; with regard to the subjective methods, the hand test was used for horizontal penetration tests.

2.1 Vertical penetration test with the Swiss ram sonde

The vertical penetration ram sonde comes from instruments for geotechnical soil investigations which were then adapted for performing penetration tests in the snowpack (Haefeli, R., 1936). The snow hardness along the snowpack is evaluated according to the balance of the work between the stressing forces linked to the action of the probe penetration and the resistance forces connected with the penetration resistance developed by the snowpack (CAA 2008, 2014; Fierz et al, 2009; Green et al, 2010). In particular:

\[R \cdot \Delta = (p \cdot h \cdot n) + p \cdot \Delta + q \cdot \Delta \]

\[R = \frac{(p \cdot h \cdot n)}{\Delta} + p + q \]

when:
- \(R \) → index of hardness [N]
- \(p \) → weight of the hammer = 10 N
- \(h \) → height of fall of the hammer [cm]
- \(n \) → number of the hammer falls [-]
- \(\Delta \) → penetration [cm].

2.2 Vertical penetration test with automatic Avatech SP2 probe

The principle of the Avatech SP2 probe is similar to that of the ram sonde, but in this case the probe penetration does not take place by the action of a hammering mass but thanks to the direct action of the operator who inserts it in the snow in a few seconds. The snow hardness along the snowpack profile is evaluated using a series of sensors that measure the resistance to penetration with a pressure sensor placed at the base of the probe as well as the depth of penetration with optical sensors placed on the probe handle and along the probe.

2.3 Horizontal penetration test or hand test

The hand test is a horizontal penetration test which consists in inserting, according to an encoded sequence, the gloved hand of the operator into the snowpack in order to define which compressive force produces the breakage of the snow in the homogeneous layer previously identified through a punctual stratigraphic analysis (CAA 2008, 2014; Fierz et al, 2009; Green et al, 2010).

2.4 Analysis and comparison of the various tests

The comparison among the index values of quantitative and qualitative resistance derived from penetrometric tests and hand tests, according to previously published works, can be correlated in order to develop a mutual correspondence scale (Fierz et al 2009). Tab. 1 shows the correspondence among the different hardness classes resulting from the above mentioned test methods.
Tab. 1: correspondence among resistance classes (after Fierz et alii 2009)

<table>
<thead>
<tr>
<th>Class of resistance</th>
<th>Battage [N]</th>
<th>Hand test [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>0-50</td>
<td>F</td>
</tr>
<tr>
<td>Low</td>
<td>50-175</td>
<td>4F</td>
</tr>
<tr>
<td>Average</td>
<td>175-390</td>
<td>1F</td>
</tr>
<tr>
<td>High</td>
<td>390-715</td>
<td>P</td>
</tr>
<tr>
<td>Very high</td>
<td>715-1200</td>
<td>K</td>
</tr>
<tr>
<td>Ice</td>
<td>> 1200</td>
<td>I</td>
</tr>
</tbody>
</table>

3. PERFORMED TESTS

During the 2015-2016 season three test campaigns were performed to carry out the described tests so as to obtain data useful to a comparison among the different hardness detection systems. In addition to tests, detailed nivological surveys were performed (stratigraphic analysis, temperature trends, water content and density trends) in order to define the specific characteristics of the snowpack in the analyzed area.

3.1 Test types and typology of the performed analysis

For each on-site survey, the following analysis and tests were carried out. You can see a synthesis in Tab. 2.

Tab. 2: test types and typology of the performed analysis

<table>
<thead>
<tr>
<th>Analysis / Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snow profile</td>
<td>analysis of the crystals</td>
</tr>
<tr>
<td></td>
<td>trend of the hardness along Hs</td>
</tr>
<tr>
<td></td>
<td>trend of the density along Hs</td>
</tr>
<tr>
<td>Battage</td>
<td>vertical test</td>
</tr>
<tr>
<td></td>
<td>trend of the hardness along Hs</td>
</tr>
<tr>
<td>Avatec SP2</td>
<td>horizontal test</td>
</tr>
<tr>
<td>Hand test</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Number and geographical distribution of the tests

The three test campaigns were carried out in the Pennine Alps and in the area of the Orobie Alps, in particular 2 in the freeride area of Oropa and 1 in the Brembo Super Ski area. Tab. 3 shows the list of the test campaigns performed and in fig. 1, 2 and 3, the geographical location of the sites.

Tab. 3: list of analyses and tests

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Mountain area</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>06/04/16</td>
<td>Southern Pennines Alps</td>
<td>Oropa</td>
</tr>
<tr>
<td>2</td>
<td>06/04/16</td>
<td>Southern Pennines Alps</td>
<td>Oropa</td>
</tr>
<tr>
<td>3</td>
<td>14/04/16</td>
<td>Orobie Alps</td>
<td>Carona</td>
</tr>
</tbody>
</table>

Fig. 1: geographical framework southern Pennine Alps and Orobie Alps (Avanet website)

Fig. 2: location of test areas n. 1 and 2 (Avanet website)

Fig. 3: location of test area n. 3 (Avanet website)
3.3 Test results and analysis
In the following pictures, the photographic view of the snowpack is reported for each test, together with the stratigraphic profile and the graphs showing the relationship between the snowpack hardness and the snowpack depth. All graphs were carried out starting from the tests with the ram sonde, SP2 probe and the hand.

Fig. 4: view of the snowpack. Site 1 - Oropa 04/06/16 S exposure / 180°

Fig. 5: stratigraphic analysis, tests à battage and hand test (Yeti output). Site 1

Fig. 6: hardness profile with SP2 probe (Avanet website). Site 1

Fig. 7: hardness profile with SP2 probe (Avanet website). Site 1

Fig. 8: view of the snowpack. Site 2 - Oropa 04/06/16 W exposure / 270°

Fig. 9: stratigraphic analysis, tests à battage and hand test (Yeti output). Site 2

Fig. 10: hardness profile with SP2 probe (Avanet website). Site 2
4. TEST RESULTS

Tests have made it possible to correlate the values of the snow hardness resulting from three test methods. From the graphs showing the variation of the snowpack hardness in function of the snowpack depth, it is possible to state as follows:

- the test of the hand with horizontal penetration, depending on the experience and skill of the operator, is a subjective test, in particular for the definition of the quantitative index of hardness value. If it is properly associated with a good stratigraphic analysis (always required for running the test), it is capable of providing, already at run time, information on the hardness of the single layers so as to define their resistance;

- the vertical penetrometric test performed with the ram sonde provides much more objective data than the hand test even if the ram sonde might fail to detect hard thin layers (e.g. layers of crystals type 8a detected in testing in sites 1, 2 and 3) or soft thin layers (e.g. layers of crystals type 4a, 5a and 7a). In this case, the skill and experience of the operator to carry out the test is crucial. In this regard, it is always useful to associate detailed stratigraphic analysis to supplement the information given by the ram sonde.

The procedure provides precise data on the variation of hardness depending on the snowpack depth but the evaluation of the data is not immediate (a data precessing is required to obtain the hardness profile), therefore its application cannot be used for immediate evaluation;

- the vertical penetrometric test performed with the Avatech SP2 probe provides data which can be largely compared to those obtained with the penetration test performed with the ram sonde. Thanks to its acquisition sensors, the Avatech SP2 probe succeeds in recording also the hard thin layers (e.g. layers of crystals type 8a detected during the test in sites 1, 2 and 3) or soft thin layers similarly to what already experienced by Pilloix and Hagenmuller, 2015. This procedure evaluates the hardness profile of the snowpack immediately after the test is run providing useful on-site information about the trend of the showpack resistance from the surface to a maximum depth of about 1.50 m.

The instruments still present some problems of reliability and performance (correct measurement of the thickness of the single layers and correct identification of the most superficial layers; hardware resistance to
damage and wear) compensated by high speed measure and repeatability.

5. CONCLUDING CONSIDERATIONS

Following on-site testing and comparative analyses carried out on the three types of tests, we can state that:

- the analyzed procedures are necessary and indispensable for assessing both the hardness of the single layers that make up the snowpack and the variation of hardness depending on its depth;
- the different data obtained from the tests must be deeper evaluated on-site so as to exclude, as much as possible, local influences and / or the operator’s subjectivity;
- all the above mentioned procedures must be associated with detailed assessments (direct observations of the environment, crystallographic and stratigraphic observations, etc. ...) so that they can be added as “useful complementary data” to the assessments of the stability or instability of the snowpack at a given point;
- definitely “the fastest” analysis methods to be performed, such as the hand test and the penetrometer test with Avatech SP2 probe, greatly simplify the operator’s task and can improve the knowledge of the snowpack allowing to better investigate the variability of the data, but they cannot be the only medium on which to base an assessment of stability or instability of the snowpack.

6. CONFLICT OF INTEREST

The authors of this study were not supported financially or materially by AvaTech, the producers of SP1 and SP2 probes.

7. REFERENCES

Anena, Meteo France (2008) Eléments de nivologie
Avatech (2016) SP2 User’s Manual Model 100002
Avanet, website https://avanet.avatech.com
Canadian Avalanche Association, 2008, Observational Guidelines and Recording Standards for Weather, Snowpack and Avalanches: Canadian Avalanche Association, Revelstoke, 78 pp
Canadian Avalanche Association, 2014, Observational Guidelines and Recording Standards for Weather, Snowpack and Avalanches: Canadian Avalanche Association, Revelstoke, 94 pp
Roch A. (1967) La neve e le valanghe
Haefeli, R., 1936, Beiträge zur Géologie der Schweiz Geotechn: Serie-Hydrol. Lieferung 3
Pilloix, T., and Hagenmuller, P., 2015, Comparaisons préliminaires de profils de résistance à lenfoncement obtenus par différentes sondes (sonde de battage, Snow Micro Pen, Avatech SP1). Revue Neige Avalanches, v. 151, pag. 6–8