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ABSTRACT: The release of dry-snow slab avalanches start with a local failure in a weak snow layer un-
derlying a cohesive slab followed by crack propagation within the weak layer. Our knowledge of these 
processes is limited by the complex microstructure of snow. It is not clear how to characterize the me-
chanical behavior of weak snowpack layers under mixed-mode loading. While most current studies as-
sume pure shear or Mohr-Coulomb failure criterions, which may apply for non-persistent weak layers or 
weak interfaces, such a failure criterion does not account for the collapsible nature of some weak snow-
pack layers. To clarify this issue, we use the discrete element (DE) method to investigate the failure crite-
rion of different types of weak layers. As the DE model mimics the high porosity of snow, the collapse of 
the structure in the weak layer during fracture can be studied. Simple shear loading simulations were car-
ried out for different slope angles which enabled to highlight a new mixed-mode shear-compression failure 
envelope. Simulations of propagation saw tests (PST) were performed to analyze the influence of weak 
layer collapse and the mechanical properties of the slab on the critical length required for the onset of 
crack propagation. Finally, a simple analytical model able to accurately reproduce the DE simulations is 
proposed. 
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1 INTRODUCTION 

The release of dry-snow slab avalanches is 
due to the failure of a weak snow layer underlying 
cohesive snow slab layers. As the load on the 
snowpack increases, local damage in the weak 
layer is assumed to develop into a crack which 
can rapidly propagate if its size exceeds a critical 
length. These two processes, namely, failure initia-
tion and crack propagation are necessary condi-
tions for avalanche release (McClung, 1979; 
Schweizer and others, 2003). 

Our knowledge of release processes is limited 
by the complex microstructure of snow and its 
highly porous character. The structural collapse of 
the weak layer (WL) observed in some field exper-
iments (van Herwijnen and Jamieson, 2005) or 
evidenced by “whumpf” sounds has raised the 
question of the origin of the initial WL failure, 
whether it is in shear or compression. If we as-
sume that damage in the weak layer is due to 

bond breaking at the microscopic scale, the stress 
distribution at the grain scale will be highly com-
plex and the failure mode still largely unknown. In 
any case, this question is rather irrelevant since 
shear and compression failure types seem to be 
linked. 

With regards to avalanche hazard assessment, 
the knowledge of the failure criterion of weak snow 
layers is essential. Hence, in analogy with other 
granular materials like sand and based on field 
data (Zeidler and Jamieson, 2005; McClung and 
Schweizer, 2006) the Mohr-Coulomb (MC) theory 
has been used to describe the failure of weak-
snow layers (Chiaia et al., 2009; Gaume et al., 
2013; Podolskiy et al., 2014). However, the MC 
criterion might be suitable to evaluate the release 
conditions on sufficiently steep slopes, typically 
more than 30° but it will obviously fail in describing 
failures on flatter slopes and remote triggering 
when an additional load is involved. 

To shed more light on this issue, we use the 
discrete element (DE) method to investigate the 
failure criterion of different types of weak layers. 
As the high porosity of snow can be accounted for 
in a DE model, the collapse of the structure in the 
weak layer during fracture can be studied. Simple 
shear loading simulations were carried out for dif-
ferent slope angles which enabled to highlight a 
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new mixed-mode shear-compression failure enve-
lope. Then, PST simulations were performed to 
analyze the influence of weak layer collapse and 
the mechanical properties of the slab on the criti-
cal length required for unstable crack propagation. 
Finally, a simple analytical model able to accurate-
ly reproduce the DE simulations is proposed. 

2 DATA AND METHODS 

2.1 Weak layer failure laboratory experiments 
 
We use laboratory data from experiments per-
formed using a load-controlled shear apparatus 
(Fig. 1a; Reiweger and Schweizer, 2013). The ex-
periments were carried out with snow samples 
containing a weak layer consisting of artificially 
produced faceted crystals. The samples were 
loaded until fracture under different loading rates 
and at various tilt angles (Fig. 1b). For the sake of 
the numerical-experimental comparison, we only 
retained a subset of the data with the fastest load-
ing rates since sintering effects, which might 
change the failure behavior for low loading rates, 
were not accounted for in our model.  

 

 
 

 
 
Fig. 1. (a) Snow sample in the shear loading appa-
ratus. (b) Catastrophic failure. From Reiweger and 
Schweizer (2013). 

2.2 Discrete element model 
 
2.2.1 Motivation and objectives 
 

Discrete element (DE) modelling (Cundall and 
Stark, 1979) allows computing the motion of a 
large number of small particles by solving dynamic 
equations for each particle and assuming a con-
tact law between them. Furthermore, at each ma-
terial point within the sample the DE method al-
lows assessing mechanical quantities such as 
stress, displacement, deformation rate, porosity, 
etc. Experimentally, this would be an impossible 
task. Hence, using DE, the mechanical and rheo-
logical behavior of the material can be explored 
locally, regardless of the spatial heterogeneities 
possibly displayed by the structure of the material 
and its mechanical quantities. This method can 
thus help to better understand physical processes 
at play in granular-like assemblies. 

The DE method has widely been used to study 
the flow of granular materials for industrial (e.g. 
Chauduri et al., 2006; Sarkar et al., 2010) or envi-
ronmental applications such as snow dynamics 
(e.g. Rognon et al., 2008; Faug et al., 2009) or to 
model the failure behavior of cohesionless (e.g. 
Nicot et al., 2004) or cohesive granular materials 
(e.g. van Baar, 1996; Delenne et al., 2004; Thakur 
et al., 2014). However, to our knowledge, the DE 
method has never been used to model the failure 
in very porous cohesive granular assemblies such 
as weak-snow layers. 
 
2.2.2 Formulation of the model: loading tests 
 
Simulated systems 

The DE simulations were performed using the 
commercial software PFC2D (by Itasca), which 
implements the original soft-contact algorithm de-
scribed in Cundall and Strack (1979). The simulat-
ed systems (Fig. 2) are two-dimensional and are 
composed of a completely rigid basal layer, a WL 
of thickness hwl  and a slab of thickness D = 0.2 m. 
The slab is composed of grains of radius 
r = 0.01 m with a primitive cubic packing (or iso-
metric). The porosity of the slab is equal to 21%. 
Hence the density of the slab ρ can be adjusted by 
changing the particle density ρp (varied in the 
simulations). The WL is composed of grains of 
radius rwl = r/2. Different types of WL were mod-
eled. The two first types of WL (#1: Fig. 2a and #2: 
Fig. 2b) are made of collapsible triangular forms, 
roughly representing the porous structure of per-
sistent WLs such as surface hoar or depth hoar. 
The difference between the two types consists not 
only in a different thickness (#1: hwl = 3 mm; #2: 
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hwl = 4.5 mm) but also in a different structure an-
gle. The half angle on top of the triangle is equal to 
40° in case #1 and to 30° in case #2. The last type 
of WL (#3: Fig. 2c) is more complex, more similar 
to a weak layer consisting for instance small facet-
ted grains, and was generated by random cohe-
sive pluviation. This means that the grains were 
randomly distributed inside the space above the 
rigid base and submitted to gravity. Each new con-
tact during the grains free fall resulted in a perma-
nent contact so as to obtain a sufficient porosity to 
represent a WL. Note that the numerical grains are 
not intended to represent the real snow grains 
which are obviously smaller and whose size is 
generally larger for the WL.  
 

 
Fig. 2. Systems simulated using the discrete ele-
ment method subjected to mixed-mode shear-
compression loading. (a) case #1, (b) case #2 and 
(c) case #3. 
 
Contact law 
We used the same interparticle contact law (in-
cluding the numerical values of the parameters) as 
described in Gaume et al. (2014). The cohesive 
bond model was also the same as in Gaume et al, 
(2014), however, the numerical values of the pa-
rameters were different. The cohesive bond can 
be envisioned as a point of glue with constant 
normal and shear stiffness 𝑘𝑘  and 𝑘𝑘  acting at the 
contact points. This bond has a specified tensile 
and shear strength 𝜎𝜎   and  𝜎𝜎 . The maximum ten-
sile and shear stresses on the bond are calculated 
via beam theory according to: 
 

𝜎𝜎 = −
𝐹𝐹
𝐴𝐴
+
|𝑀𝑀|𝑟𝑟   
𝐼𝐼

                                    (1𝑎𝑎) 

𝜏𝜏 =
|𝐹𝐹 |
𝐴𝐴
                                                      (1𝑏𝑏) 

 
where 𝐹𝐹  and 𝐹𝐹  are the bond normal and shear 
forces, 𝑀𝑀  is the bending moment,  𝐴𝐴 = 𝜋𝜋𝑟𝑟  and 
𝐼𝐼 =   𝜋𝜋𝑟𝑟 /4. If the maximum tensile stress exceeds 
the normal strength (𝜎𝜎 ≥ 𝜎𝜎 ), or the maximum 
shear stress exceeds the shear strength (𝜏𝜏  ≥ 
  𝜎𝜎 ), then the parallel bond breaks. The parame-
ters used for the bond model of the WL are sum-
marized in Tab. 1. For the mixed-mode loading 
tests, the slab is considered as a perfectly rigid 
material. 

 
Tab. 1. Mechanical parameters used in the simula-
tions for the cohesive law. 𝑘𝑘 : bond normal stiff-
ness; 𝑘𝑘 : bond shear stiffness; 𝜎𝜎   : bond tensile 
strength; 𝜎𝜎   : bond shear strength. 

 

 𝑘𝑘  (Pa/m) 𝑘𝑘 /𝑘𝑘  𝜎𝜎  (Pa) 𝜎𝜎 /𝜎𝜎  
WL #1 1×1010 2 4×104 2 
WL #2 1×1010 2 1.6×104 2 
WL #3 1×1010 2 8×104 2 

 
Loading 

Loading is applied by gravity by progressively 
increasing the density of the slab until catastrophic 
failure of the system. Simulations were carried out 
for different loading angles 𝜃𝜃 corresponding to the 
orientation of gravity according to 𝑔𝑔 = 𝑔𝑔 sin 𝜃𝜃 and 
𝑔𝑔 = 𝑔𝑔 cos 𝜃𝜃. Hence, pure compression corre-
sponds to 𝜃𝜃 = 0°, pure shear to  𝜃𝜃 = 90° and pure 
tension to 𝜃𝜃 = 180°. The failure is identified by 
analyzing the average velocity of the slab which 
strongly increases when the WL fails. Note that 
sub-critical local bond fractures always precede 
the catastrophic failure and induce temporary fluc-
tuations in the velocity signal which rapidly stabi-
lizes. 
 
2.2.3 Formulation of the model: PSTs 
 

PST simulations were performed to assess the 
so-called critical length ac required for the onset 
crack propagation. The model setup as well as the 
parameters are described in more detail in a com-
panion paper (Gaume et al., 2014) which ad-
dresses the dynamic phase of crack propagation. 
In this paper, we focus on the onset of crack prop-
agation and the evaluation of the critical length ac, 
using a WL of type #2. The main change with re-
gards to the loading tests consists in accounting 
for slab elasticity. The slab is assumed purely 
elastic, i.e. tensile failure of the slab is not ac-
counted for (see Gaume et al. 2014 for the influ-
ence of slab tensile fracture).  Besides, for the 
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PST simulations, loading is due to the weight of 
the slab and the translation of a “saw” inside the 
WL at a constant speed (refer to Gaume et al., 
2014 for illustrations). Simulations are carried out 
for different system parameters, namely different 
slab densities ρ  (varied between 80 and 350 
kg/m3), Young’s modulus E of the slab (varied be-
tween 1 and 20 MPa) and slope angles θ  (varied 
between 0 and 40°). 

3 RESULTS 

3.1 Failure envelope 
 
3.1.1 WL types #1 and #2 
 

The shear stress τ versus the normal stress σn 
at the time of catastrophic failure for the two first 
types of WL is shown in Fig. 3. 

 For type #1, and for a negative normal stress 
σn (tension), the shear stress increases almost 
linearly with increasing normal stress. The WL 
macroscopic tensile strength 𝜎𝜎   , different from the 
microscopic tensile strength of the bond 𝜎𝜎 , is ob-
tained for pure tension (θ = 180°) and is equal to -
1.1 kPa. The cohesion (= shear strength at zero 
normal stress) is equal to 0.7 kPa. Then, for a 
normal stress larger than approximately 0.2 kPa, 
the shear stress decreases linearly with increasing 
normal stress. The compressive strength is found 
for a pure compression test (θ = 0°) and is equal to 
1.2 kPa.  

 

 
 
Fig. 3. Failure envelope of WL types #1 and #2 
obtained using the DE model and represented in 
the τ – σn  (shear vs normal stress) half-plane. 

 

For the second type of WL, the features of the 
failure envelope are very similar. While the tensile 
strength and the transition point between increas-
ing and decreasing trends are very similar for both 
WL types, the cohesion (c = 0.55 kPa) and com-
pressive strength (σc = 1.35 kPa) are slightly dif-
ferent. Furthermore, the slope of the increase and 
decrease of the shear stress with normal stress is 
closely related to the angle of the structure repre-
senting the WL, ~30° for case #1 and ~40° for 
case #2. This latter result does not depend on the 
contact friction coefficient µ or on the bond shear 
strength  𝜎𝜎   , indicating that the bonds fail either in 
tension or due to bending forces (second term in 
Eq. (1a)) but not in shear. Finally, the tensile 
strength of the bonds does not influence the form 
of the failure envelope but only induces a dilatation 
of the envelope.  
 
3.1.2 WL type #3 
 

Fig. 4 shows the shear stress τ versus the 
normal stress σn at the time of catastrophic failure 
for the WL of type #3. This WL has a more com-
plex structure than types #1 and #2 and a different 
failure envelope exhibiting a more “typical” form 
compared to other granular materials (sand or 
clay). The shear stress increases as compression 
increases from approximately 180° to 20°. Then, 
as the loading angle becomes lower than 20°, the 
shear stress starts to decrease with increasing 
normal stress. The tensile strength is equal to -
0.36 kPa, the cohesion 0.31 kPa and the com-
pressive strength 3 kPa. The transition between 
the increasing and decreasing trends of τ  with σn  
occurs for a value of σn  between 2 and 2.5 kPa, 
much larger than in the two previous cases.  

Similarly to the two previous cases, the main 
determining parameter is the bond tensile 
strength, which only dilates the failure envelope 
without influencing its form. This again suggests 
again that bond failure occurs in tension or due to 
bending forces. Interestingly, the macroscopic 
tensile strength is much lower than the bond ten-
sile strength. If we had simulated perfectly straight 
fibers, the macroscopic tensile strength would be 
exactly equal to 0.25 times the bond strength 
since (𝑟𝑟 /  𝑟𝑟) = 0.25 due to the contact orienta-
tion. In the present case, the contact bond orienta-
tion is randomly distributed and the bonds are 
therefore more prone to failure since they are sub-
jected to high bending forces [Eq. (1a)]. This also 
explains why the tensile strength  𝜎𝜎  of WL #2 (1.1 
kPa) is closer to its bond tensile strength 𝜎𝜎  (16 
kPa) than for WL type #1 (𝜎𝜎 = 40 kPa and 
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𝜎𝜎 = 1.1 kPa). Indeed, for a direct tension test, the 
contacts are closer to the vertical and thus more 
prone to fail in tension in case #2 than in case #1; 
in the latter case bonds support higher bending 
forces. 

 

 
 
Fig. 4. Failure envelope of WL type #3 and exper-
imental data of failure of faceted crystals (Reiwe-
ger and Schweizer, 2013) represented in the τ – 
σn  (shear vs normal stress) half-plane. 

 
Finally, we would like to point out that, similarly 

to what is observed in the laboratory experiments, 
the WL failure in the simulations is always local-
ized inside the WL along an irregular surface close 
to the slab-WL interface. Furthermore, WL col-
lapse always constitutes a secondary process of 
the catastrophic, mixed-mode shear-compression 
failure. 
 
 
3.1.3 Experimental results 
 

A subset of the experimental results of the 
mixed-mode shear-compression loading tests per-
formed by Reiweger and Schweizer (2013) is also 
shown in Fig. 3. Similarly to the failure envelope of 
WL type #3, the shear stress at the time of failure 
increases with increasing normal stress until a cer-
tain normal stress threshold after which the shear 
stress sharply decreases. The compressive 
strength is equal to ~2.6 kPa and the cohesion 
and tensile strength were obtained by fitting the 
subset of the data that increase with 𝜎𝜎    by a clas-
sical Mohr-Coulomb line  τ = c + 𝜎𝜎    tan 𝜑𝜑. The co-
hesion c is equal to ~0.17 kPa, the internal friction 
angle 𝜑𝜑 is equal to ~18° and the tensile strength is 
equal to −𝑐𝑐/ tan 𝜑𝜑 = −0.52  kPa.  
 

3.2 Influence of the loading angle 
 

Fig. 5 shows the total strength at the time of 
failure versus the loading angle for the three types 
of WL as well as the experimental data. The total 
strength corresponds to the value of 𝜏𝜏 + 𝜎𝜎  at 
the time of failure. We first observe that the failure 
strength for the WL of type #1 hardly depends on 
the loading angle. For WL type #2, only a slight 
decrease is observed between 0 and 30°. Indeed, 
in Fig. 5 loading angles between 0 and 70° are 
shown, corresponding to only the decreasing part 
of the failure envelope in Fig. 3 where the total 
strength does not vary significantly. 

For WL type #3, on the other hand, the total 
strength decreases with increasing slope.  

 

 
 
Fig. 5. Total strength as a function of the loading 
angle for the three types of WL and for experi-
mental data points (Reiweger and Schweizer, 
2013). The dashed line is a fit to the data assum-
ing a Mohr-Coulomb criterion with a cohesion c = 
0.17 kPa and a friction angle  𝜑𝜑 = 18°. 
 

For the experimental data, the decrease is 
even more pronounced and data for loading an-
gles above the internal friction angle 𝜑𝜑 = 18° are 
well reproduced by the Mohr-Coulomb criterion.  
 
3.3 Critical length for crack propagation 
 

Different PST simulations were performed for 
the WL of type #2 for different system parameters. 
Fig. 6 shows that the critical length ac increases 
with increasing Young’s modulus of the slab, de-
creases with increasing slab density and slightly 
decreases with the slope angle. 
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Fig. 6. Critical length ac for crack propagation in-
side the WL of type #2 as a function of (a) the slab 
Young’s modulus E for a slab density ρ = 300 
kg/m3, a slab thickness D = 0.2 m and a slope an-
gle θ = 0°. (b) Critical length vs slab density for E = 
4 MPa, D = 0.2 m and θ = 0°. (c) Critical length vs 
slope angle for E = 4 MPa, D = 0.2 m and ρ = 
300 kg/m3. The dashed line represents the mod-
eled critical length according to Eq. (4). 
 

In order to reproduce these trends, an analyti-
cal expression was developed. It was shown (Chi-
aia et al., 2008, Gaume et al., 2013) that the pres-
ence of a crack inside the WL induces a stress 
concentration at the tip of the crack. If slab bend-
ing effects are neglected, the maximum stress at 
the crack tip 𝜏𝜏  was found to depend on the 
shear stress due to the slab τ, the crack length a 
and the characteristic length of the system 𝛬𝛬 ac-
cording to:  

 
𝜏𝜏 = 𝜏𝜏 1 +

𝑎𝑎
𝛬𝛬
                                                (2) 

 
The characteristic length 𝛬𝛬 is a function of the ef-
fective slab Young’s modulus  𝐸𝐸 = 𝐸𝐸/(1 − ), 
with  the Poisson’s ratio of the slab, the slab 
thickness D, the WL thickness Dwl and the WL 
shear modulus Gwl : 
 

𝛬𝛬 =
𝐸𝐸′𝐷𝐷𝐷𝐷
𝐺𝐺

                                                    (3) 

 
The problem of Eq. (2) is that the effect of slab 
bending is not accounted for and thus, there would 
be no stress concentration for a zero slope angle 
and consequently no critical length which is clearly 
contradicted by both field experiments (e.g. van 
Herwijnen et al., 2010) and the presented simula-
tions (Fig. 6). From our DE simulations, a com-
plete expression of the maximum shear stress at 
the crack tip was found: 
 

𝜏𝜏 = 𝜏𝜏 1 +
𝑎𝑎
𝛬𝛬

+ 𝛼𝛼𝜎𝜎
𝑎𝑎
𝛬𝛬

                              (4) 
 

with 𝛼𝛼 = 0.5. This expression was confirmed by a 
finite element analysis of a slab bending over a 
WL. Note that the bending induced stress (right-
term in Eq. (4)) computed using beam theory (Ti-
moshenko and Goodier, 1970) gives a coefficient 
𝛼𝛼 = 3, and a scaling of a with slab depth D rather 
than 𝛬𝛬 ; also, the term according to beam theory 
would be independent of the slab Young’s modu-
lus and largely overestimate the bending stress.  

From Eq. (4) the critical length ac can be easily 
obtained by solving 𝜏𝜏 = 𝜏𝜏  where 𝜏𝜏   is the 
shear stress at the time of failure given by the fail-
ure envelope: 

 

𝑎𝑎 = 𝛬𝛬
−𝜏𝜏 + 𝜏𝜏 + 4𝛼𝛼𝜎𝜎 𝜏𝜏 − 𝜏𝜏

2𝛼𝛼𝜎𝜎
                    (5) 

 

This expression is valid for all sets of the system 
parameters. The modeled critical length was rep-
resented on Fig. 6 using for 𝜏𝜏  a linear fit of the 
failure envelope between 0° and 70° in the Mohr-
Coulomb domain. As shown in Fig. 6, the agree-
ment between the modeled critical length and the 
critical length obtained with DE simulation is excel-
lent.  

We also tried to calculate the critical length us-
ing the anticrack model of Heierli (2008), but were 
unable to reproduce the DE results. Indeed, with 
our approaches (DE and analytical), the critical 
length is proportional to 𝐸𝐸 and to ρ-1 whereas it is 
proportional to E and ρ−

2 in the anticrack model. 
This is due to the fact that the anticrack model 
commonly considers the WL as a perfectly rigid 
material which is a stringent assumption. 
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4 DISCUSSION AND CONCLUSIONS 

We proposed a novel approach to model WL 
failure and the onset of crack propagation in a 
slab-WL system using the cohesive discrete ele-
ment method with elastic-brittle bonded grains. 
This method allows mimicking the high porosity of 
weak snow layers and reproduced a similar mixed-
mode shear-compression failure envelope as ob-
served in laboratory experiments of snow failure. 
The DE simulations suggest that the geometric 
structure of the WL as well as the tensile strength 
of the bonds were the most important factors influ-
encing the failure envelope. The failure envelope 
obtained from the DE simulations was found to be 
in good qualitative agreement with experimental 
data for the more complex, but also more realistic 
weak layer type (type #3).      

Furthermore, it was shown that the Mohr-
Coulomb (MC) criterion is able to accurately rep-
resent the failure of a WL made of faceted crystals 
for loading angles higher than 20°. Hence, the MC 
criterion could be sufficient, in practice, to model 
WL failure for typical avalanche slopes that are 
generally steeper than 30° (Schweizer et al., 
2003). In addition, the internal friction angle of the 
tested WL was found to be around 18° a value 
which is in agreement with the few previous exper-
imental studies made on snow internal friction 
(Roch, 1966). However, this value is lower than 
the dry (or crack-face) friction which is typically 
around 30° (van Herwijnen and Heierli, 2009).  

For slope angles lower than 20°, the shear 
stress sharply decreases with increasing normal 
stress. This phase could be simply accounted for 
using a modified MC cap model similarly to the 
Cam-Clay model or the modified Drucker-Prager 
cap model which has been applied for low density 
snow (Haehnel and Shoop, 2004). 

Moreover, DE simulations of the propagation 
saw test were carried out for the WL of type #2. 
The critical length increased with increasing 
Young’s modulus of the slab and decreased with 
increasing density and slope angle. An analytical 
model based on the extension of the deficit zone 
(or crack) model (Chiaia et al., 2008; Gaume et al., 
2013) was then developed that also accounts for 
the shear stress induced by bending of the slab 
[Eq. (4)]. The modeled critical length was found in 
excellent agreement with those obtained from the 
DE simulations. Note that, according to Eq. (5), 
the trend with slab Young’s modulus, which only 
influences the characteristic length  𝛬𝛬, would not 
change if a different type of WL would have been 
considered. However, the WL type would change 
the influence of slab density and of slope angle 

since the failure criterion and thus the failure shear 
stress 𝜏𝜏  would be modified. In addition, since for 
snow, the Young’s modulus, the density and the 
depth of the slab are often linked, the overall de-
pendence of the critical length with these parame-
ters might be more complex. 

In the future, we plan to perform DE simula-
tions of saw tests that take into account the link 
between the mechanical properties of the slab and 
compare the results with experimental data, but 
also consider the failure of different and more 
complex types of WLs. The very long-term objec-
tive, but so far unreachable due to computational 
issues, will be to simulate the real structure of the 
WL from segmented micro-tomographic images 
(Hagenmuller et al., 2013). 

5 REFERENCES 

van Baars, S. (1996). Discrete element modelling of 
granular materials. Heron,41(2), 139-157. 

Chaudhuri, B., A. Mehrotra, F. J. Muzzio, and M. S. 
Tomassone (2006), Cohesive effects in powder 
mixing in a tumbling blender, Powder Technol., 
165(2), 105–114. 

Chiaia, B., P. Cornetti, and B. Frigo (2008), Triggering of 
dry snow slab avalanches: stress versus fracture 
mechanical approach, Cold Reg. Sci. Technol., 53, 
170-178. 

Cundall, P. A., and O. D. Strack (1979), A discrete 
numerical model for granular assemblies, 
Geotechnique, 29(1), 47–65 

Delenne, J. Y., El Youssoufi, M. S., Cherblanc, F., and 
Bénet, J. C. (2004). Mechanical behaviour and 
failure of cohesive granular materials. International 
Journal for Numerical and Analytical Methods in 
Geomechanics, 28(15), 1577-1594. 

Faug, T., R. Beguin, and B. Chanut (2009), Mean 
steady granular force on a wall overflowed by free-
surface gravity-driven dense flows, Phys. Rev. E, 
80(2), 021305. 

Gaume, J., G. Chambon, N. Eckert, and M. Naaim 
(2013), Influence of weak-layer heterogeneity on 
snow slab avalanche release: Application to the 
evaluation of avalanche release depths., J. Glaciol., 
59(215), 423-437. 

Gaume, J., A. van Herwijnen, J. Schweizer, G. 
Chambon and K. Birkeland (2014), Discrete 
element modeling of crack propagation in weak 
snowpack layers. Proceedings of the International 
Snow Science Workshop, Banff, Canada 2014 (this 
issue). 

Gauthier, D., and B. Jamieson, Evaluation of a 
prototype field test for fracture and failure 
propagation propensity in weak snowpack layers, 
Cold Reg. Sci. Technol., 51 (2), 87-97.  

Hagenmuller, P., Chambon, G., Lesaffre, B., Flin, F., 
and Naaim, M. (2013). Energy-based binary 

Proceedings, International Snow Science Workshop, Banff, 2014

687



segmentation of snow microtomographic images. J. 
Glaciol., 59(217), 859-873. 

Heierli, J., (2008), Anticrack Model for Slab Avalanche 
Release, PhD thesis, Karlsruhe University. 

McClung, D. (1979), Shear fracture precipitated by 
strain softening as a mechanism of dry slab 
avalanche release, J. Geophys. Res., 84(B7), 3519-
3526. 

McClung, D., and J. Schweizer, Fracture toughness of 
dry snow slab avalanches from field measurements, 
J. Geophys. Res., 111, F04,008, 2006. 

Nicot, F., Hadda, N., Bourrier, F., Sibille, L., & Darve, F. 
(2011). Failure mechanisms in granular media: a 
discrete element analysis. Granular Matter,13(3), 
255-260. 

Podolskiy, E. A., Chambon, G., Naaim, M., & Gaume, J. 
(2014). Evaluating snow weak-layer rupture 
parameters through inverse Finite Element 
modeling of shaking platform experiments.  Nat. 
Hazards Earth Sys. D., 2(7), 4525-4580. 

Reiweger, I., & Schweizer, J. (2013). Weak layer 
fracture: facets and depth hoar. The Cryosphere, 7, 
1907-1925.  

Roch, A. (1966). Les variations de la résistance de la 
neige. IAHS publication, 69, 86-99. 

Rognon, P., J.-N. Roux, M. Naaim, and F. Chevoir 
(2008), Dense flows of cohesive granular materials, 
J. Fluid Mech., 596, 21–47. 

Sarkar, A., and C.Wassgren (2010), Continuous 
blending of cohesive granular material, Chemical 
Engineering Science, 65(21), 5687–5698. 

Schweizer, J., B. Jamieson, and M. Schneebeli (2003), 
Snow avalanche formation, Rev. Geophys., 41(4), 
1016. 

Thakur, S. C., Morrissey, J. P., Sun, J., Chen, J. F., & 
Ooi, J. Y. (2014). Micromechanical analysis of 
cohesive granular materials using the discrete 
element method with an adhesive elasto-plastic 
contact model. Granular Matter,16(3), 383-400. 

Timoshenko, S.P. and J.N. Goodier (1970). Theory of 
Elasticity. McGraw-Hill, 608 pp. 

van Herwijnen, A., and J. B. Jamieson (2005), High 
speed photography of fractures in weak layers, Cold 
Reg. Sci. Technol., 43(1-2), 71-82. 

van Herwijnen, A., and Heierli, J. (2009). Measurement 
of crack-face friction in collapsed weak snow 
layers. Geophys. Res. Lett., 36(23). 

van Herwijnen, A., Schweizer, J., Heierli, J. (2010). 
Measurement of the deformation field associated 
with fracture propagation in weak snowpack 
layers. J. Geophys. Res., 115, F03042. 

 
 
 
 

Proceedings, International Snow Science Workshop, Banff, 2014

688




