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ABSTRACT: Snow avalanche simulation tools are used for hazard estimations and protection planning. Initial condi-
tions and flow model parameters have to be chosen carefully in order to gain meaningful simulation results. A depth
averaged flow model is used for this investigation, where simple entrainment and friction relations are implemented in
the SamosAT simulation software. The employed mass balance relation allows for the full range of entrainment mech-
anisms, from frontal plowing to gradual erosion. The initial snow reservoir distribution for release and entrainment is
estimated by measurement and empirical observation for the entire mountain. Flow model parameters for the entrain-
ment model and the Voellmy friction relation are systematically optimized by back calculating a documented event.
The simulation results are analyzed in three-dimensional terrain with the help of a transformation into an avalanche
path dependent coordinate system. Six different optimization variables are scrutinized, related to runout, affected
area, velocity, deposition depth and mass growth due to entrainment. The optimization method explicitly takes the un-
certainties associated with the observational variables into account. To cover the entire physically relevant parameter
range a large number (104) of random flow model parameter combinations and their corresponding simulation runs
are investigated. This yields posterior parameter distributions representing optimal parameter combinations, which
are of fundamental interest for engineers and scientists. We demonstrate how the proposed systematic simulation
analysis contributes to an objective parameter calibration and optimization.
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1. INTRODUCTION

Snow avalanche simulation tools are used for hazard
estimations and protection planning. Initial conditions
and flow model parameters have to be chosen carefully
in order to gain meaningful simulation results. Some
parameters of the numerical models are more concep-
tual than physical and have to be determined solving
an inverse problem, matching simulation results to field
data.Unfortunately quality and availability of field data
is generally poor. Furthermore simulations in 3d terrain
include large amounts of result data and need adequate
evaluation methods. Most studies on avalanche simula-
tion models are based on multi parameter models, but
have been optimized for a single optimization variable,
namely the avalanche runout. A multivariate optimiza-
tion method taking into account simulation results in 3d
terrain is in great demand.
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The aim of the presented work is to employ a method
that provides the possibility to optimize multiple model
parameters employing a multivariate evaluation of simu-
lation results.

To do so, a simple well-known three parametric
flow model including entrainment is implemented in
the snow avalanche simulation software SamosAT
(Snow Avalanche MOdelling and Simulation - Advanced
Technology, Zwinger et al., 2003; Sampl and Zwinger,
2004). A large number of simulation runs is performed
and the results are analyzed in an avalanche path de-
pendent coordinate system (Fischer, 2013). The main
results are parameter distributions for three flow model
parameters, that can be utilized as base for future guide-
lines.

2. AVALANCHE EVENT

Observations on extreme events are important to define
simulation input and optimization data, but quality and
quantity of extreme avalanche observations is often lim-
ited due restricted accessibility (weather, safety, ...). If
no field data is available, empirical laws may also pro-
vide valuable data for the optimization variables.
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Figure 1: Destroyed houses and infrastructure in the runout
area. Picture WLV.

The investigated extreme event is the Wolfsgruben
avalanche; on the 13th of march 1988 a catastrophic
avalanche struck the village and led to severe loss of life
and property (three houses and nine cars were totally
destroyed; several other buildings, about 20 cars and a
lot of infrastructure got damaged, see figure 1; several
people were killed or hurt). The Wolfsgruben avalanche
path starts in a release area of≈20 ha at≈2244 m.a.s.l.,
follows a gully with a width of about 100 m, and finally
reaches the community of St. Anton a. A., Austria (at
≈1260 m.a.s.l).

3. AVALANCHE SIMULATION

3.1 Simulation approach

Up to date simulation software for the dense, most de-
structive part of snow avalanches is mostly based on two
dimensional depth averaged, deterministic flow models
(Sampl and Zwinger, 2004; Christen et al., 2010; Mergili
et al., 2012), describing the evolution of depth averaged
flow velocity ū and depth h̄. An essential part of snow
avalanche modelling is the appropriate choice of bottom
friction and entrainment relation. Here, we stick to the
well known Voellmy friction relation for the basal shear
stress τb, which combines a Coulomb bottom friction with
a velocity dependent drag term

τb = σb µ +
g

ξ
ū2 , (1)

with the dimensionless Coulomb friction parameter µ and
the turbulent friction coefficient ξ [m s−2] (Voellmy, 1955),
and a simple assumption for the entrainment rate

q̇ =
τb
eb
‖ū‖, (2)

that includes the erosion energy parameter eb [m2 s−2].
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Figure 2: Wolfsgruben avalanche path (∆z = 984 m). Shown
is the snow cover distribution (h0 = 1.61 m, z0 = 1289 m.a.s.l,
∆h = 0.08) and event documentation: central flow line in black,
release area (196225 m2, with mean slope angle 36.5◦) in blue,
affected area (64153 m2, @ 14.5◦) in orange, destroyed house
red dot.

3.2 Simulation input

To perform snow avalanche simulations, a parameter set
up for the employed flow model and initial conditions
have to be defined.

3.2.1 Initial conditions

The mountain surface is represented by a digital eleva-
tion model z in a spatial resolution of 5 m×5 m to repre-
sent the winterly, snow covered surface.

By assuming an initial snow cover distribution

hsnow = (h0 + (z − z0) ∆h) cos θ , (3)

the initially released snow mass and the potentially erodi-
ble snow are determined in a consistent manner. The
precipitation is assumed to be equal at each location,
varying with slope θ and altitude z through the snow
depth gradient ∆h, which is a is a regional coefficient and
varies for different precipitation characteristics (Burkard
and Salm, 1992). h0 is the estimated snow depth mea-
sured on flat ground at a reference altitude z0. It is of-
ten linked to the sum of new snow in 3 days for a cer-
tain return period (Burkard and Salm, 1992). Figure 2
shows release area and snow cover distribution, vary-
ing with altitude and slope. The total release volume is
Vrelease = 354617 m3.
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Figure 3: Sketched simulation results (e.g. simulation outline
plim; blue) and affected area Âaffected (outlined in orange), super-
imposed with avalanche path domain and new coordinate sys-
tem along the central flow line (black). run out - r, r̂, matched
and exceeded affected area (green, red) - t, f , maximum ve-
locity - umax, average deposition depth - d and mass growth -
G.

3.2.2 Flow model parameters Θ={µ, ξ, eb}

For each simulation run a set of flow model parame-
ters Θ={µ, ξ, eb} is defined. The appropriate param-
eter range of each model parameter, i.e. its interval
bounds Θprior

min ,Θ
prior
max are constrained by physically rele-

vant ranges, results of experimental work or prior model
optimization through back calculations. Choosing pa-
rameter ranges too small may exclude possible solu-
tions, defining the ranges too large multiplies the com-
putational efforts. Here, the choice of the prior parame-
ter distributions Ωprior

Θ includes parameter ranges, based
on a scaling analysis of the physically relevant parame-
ter space, i.e. µ = [0.1, 0.6], ξ = [400, 15000] m s−2 and
eb = [0, 75000] m2 s−2, assuming a equal distribution on
the entire interval.

3.3 Simulation results

The most important simulation results for the evaluation
are the peak values, i.e. maximum values over time, of
flow depth h, velocity |u| and impact pressure p = ρ |u|2,
with ρ = 200 kg m−3, the density of flowing snow. The
simulation results are evaluated in an avalanche path de-
pendent coordinate system, with flow path coordinate s
and lateral coordinate l, according to the main flow path
shown in figure 2 and a domain width of 500 m (Fischer,
2013).

4. OPTIMIZATION VARIABLES

The optimization variables represent the different cat-
egories, that can be accessed through both, observa-
tional data and simulation results. In order to perform
an objective analysis, a set of six optimization variables
X = {r, t, f, umax, d,G}:

1. run out - r

2. matched affected area (true) - t

3. exceeded affected area (false) - f

4. maximum velocity - umax

5. average deposition depth - d

6. mass growth - G

is defined in terms of either observation and simulation.
Observational variables and their associated uncertainty
are denoted by X̂ ±σX̂ , whereas simulation variables by
plain X.

4.1 run out - r

For each simulation run, run out r refers to the fur-
thest coordinate s, measured as projected distance in
the avalanche path flow direction (Fischer, 2013), where
the maximum value of the peak impact pressure in the
cross section still exceeds the predefined pressure limit
maxl p(s, l) > plim (Teich et al., 2013). We set plim=1 kPa,
which may be adapted for different hazard mapping
guidelines (Johannesson et al., 2009). The observed
runout is r̂ = 2219 m ±50 m.

4.2 relative matched and exceeded affected area - t, f

We assume that peak pressures observed in the
avalanche p̂ exceed the pressure limit plim, i.e. p̂ > plim
inside the observed affected area. Considering given af-
fected and total area, two independent relations can be
specified as:

• true prediction - simulated area t with p > plim
matching observed affected area Âaffected

• false prediction - simulation area f with p > plim
exceeding observed affected area Âaffected

The observational value for the optimization variable true
prediction t relative to the affected area Âaffected itself is
given by t̂ = 1 and consequently for the false prediction
f by f̂ = 0. The associated uncertainty is estimated rel-
ative to the affected area to σt̂,f̂ = 0.1.
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Figure 4: Posterior parameter frequency ΩΘ for simulation
runs with α > αlim. The box plot above summarizes some
statistical features of the posterior distributions ΩΘ such as
the minimum value Θmin, the 25%, 50% and 75% quantiles
Θ25%,Θ50%,Θ75% and the maximum value Θmax. To provide a
reference to the prior distribution Ωprior

Θ the minimum and maxi-
mum values Θprior

min ,Θ
prior
max are shown.

4.3 maximum velocity - umax

The maximum velocity umax is defined for each simula-
tion run by taking the maximum of the peak velocities
over the entire simulation domain:

umax = max
s,l
‖ū‖. (4)

The observational maximum velocity along an avalanche
path with fall height ∆z is estimated by ûmax ≈ 0.6

√
g∆z

(McClung and Schaerer, 2006). For the investigated
Wolfsgruben avalanche path the maximum velocity is
ûmax(∆z = 984 m) = 58.9± 2.5 m s−1.

4.4 average deposition depth - d

The average deposition depth is defined as observed
depth, averaged in the affected area and is directly mea-
sured in the field. For the Wolfsgruben avalanche depo-
sition d̂ = 4± 0.5 m were observed.

For the simulation deposition depths, we take the
peak flow depth h and define d = h ρ

ρ̂deposit
(ρ̂deposit =

400 kg m−3) averaged in the affected area, taking into
account that the employed flow model does not allow
for densification or deposition; densification in snow
avalanches can reach, comparing released, flowing and
deposited snow, a factor of three (Ancey, 2005).

Table 1: Information on the posterior distribution ΩΘ of opti-
mization variables Θ. Listed are minimum and maximum value
Θmin, Θmax, 25%, 50% and 75% quantiles for each parameter
Θ25%, Θ50%, Θ75% and Θαmax .

Θmin Θ25% Θ50% Θαmax Θ75% Θmax

µ 0.23 0.24 0.26 0.26 0.26 0.29
ξ[ m s−2] 7500 8825 12375 14150 13925 14900
eb[ m2 s−2] 8750 10250 11500 11500 13375 15250

4.5 mass growth - G

The mass growth index G is defined as the ratio of de-
posited to released mass, describing the increase of
flowing avalanche mass due to entrainment with a di-
mensionless number

G =
mdeposit

mrelease
. (5)

For the Wolfsgruben avalanche the mass growth is esti-
mated to Ĝ = 1.45± 0.1.

5. OPTIMIZATION

The goal of the proposed optimization is to provide an
objective, scalar metric, which describes the correspon-
dence between a single simulation run and the docu-
mentation.

For each optimization variable a measure of the corre-
spondence between observation and simulation is intro-
duced as a normalized, Gaussian function N with mean
X̂ and variance σ2

X̂
:

αX(Θ) =
N (X(Θ) | X̂, σ2

X̂
)

N (X̂ | X̂, σ2
X̂

)
. (6)

The obtained value is bounded in the interval [0, 1],
where αX(Θ) = 0 indicates negligible agreement and
αX(Θ) = 1 optimal correspondence. So we determine
the metric αX(Θ) for each optimization variable X =
{r, t, f, umax, d,G}, conditional on the choice of the prior
parameter set Θ = {µ, ξ, eb}, summarized in a target
function α(Θ)

α(Θ) =
∑
X

wX αX(Θ). (7)

Thereby is
∑
X wX

!
= 1, such that α(Θ) is also bounded

by the interval [0, 1]. The weighting factors wX allow to
emphasize or reduce the importance of certain optimiza-
tion variables. So the optimization method can easily be
adopted to cases with more or less observational data.

A correspondence limit αlim is used as a selection rule
to determine the simulation runs with α(Θ) > αlim. The
related frequency distribution ΩΘ is analyzed for each of
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the model parameters Θ = {µ, ξ, eb}. Of particular in-
terest are statistical features, such as the 25%, 50% (me-
dian) and 75% quantiles for each parameter Θ75%, Θ50%,
Θ75%, minimum and maximum value Θmin, Θmax and the
parameter value Θαmax that corresponds to the highest
simulation-observation correspondence, i.e. maxα(Θ).

In figure 4 and table 1 the results of the analysis of the
posterior parameter distributions ΩΘ for Θ = {µ, ξ, eb}
applying a correspondence limit αlim = 0.64 are shown.
We conclude, that for µ and eb a clear peak is found, i.e.
Θ25%, Θ50%, Θ75% and Θαmax are relatively close, see ta-
ble 1. For ξ not a peak, but rather a lower boundary is
found.

6. CONCLUSIONS

With the presented framework of simulation and opti-
mization, a method is developed, that allows to optimize
multiple model parameters using a multivariate evalu-
ation by comparing simulation results with field data,
based on an objective, scalar metric.

104 simulation runs have been performed with varying
parameter sets Θ. Parameter sets with high correspon-
dence have been identified, analyzing simulated and
belonging observed optimization variables X̂ using the
scalar metric α(X). For the given event, the evalu-
ation showed a clear peak for µ25% = 0.24 < µ <
µ75% = 0.26 and eb,25% = 8825[ m2 s−2] < eb < eb,75% =
13925[ m2 s−2], moreover this coincides with the parame-
ter values of maximum correspondence µαmax = 0.26 and
eb,αmax = 11500 highlighting the information value. For ξ
a lower bound ξ > ξmin = 7500[ m s−2], but no peak or
upper limit was identified. This means that the optimal
value of ξ is some arbitrary value larger than ξmin. How-
ever, for ξ values in this range, the effect of the turbulent
friction becomes negligible.

The strength of this optimization concept is the possibility
to be adopted to other optimization variables, flow mod-
els and their related parameters. For further details on
the employed method and its results we refer to the full
paper that will be published elsewhere.
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