Shelter Belts For Montana

E. E. Isaac
Extension Horticulturist
Shelter Belts For Montana

By

E. E. Isaac, Extension Horticulturist

Trees and shrubs are essential to the building of permanent homes. They increase the loan and sale value of property and make living conditions more pleasant. A few rows of trees well placed will give protection to buildings and live stock from the chilling winds of winter, and to fruit and vegetable gardens from the drying winds of summer.

The early work in establishing shelter belts in Montana was largely in cooperation with the Northern Great Plains Field Station, Mandan, N. D. Information gathered from this demonstration work will be helpful to those who contemplate planting trees in the future. The interest that has been built up in planting trees, establishing fruit gardens, and improving the farmstead will be instrumental in placing Montana’s rural development on a more permanent basis.

In furtherance of this work a state nursery has been established for the purpose of producing trees to be distributed to the people of the state at low cost. This nursery was established under the Clark-McNary Act, passed by Congress in June 1924. Section 4 of this Act reads as follows: “That the Secretary of Agriculture is hereby authorized and directed to cooperate with the various states in the procurement, production, and distribution of forest trees, seeds and plants for the purpose of establishing wind breaks, shelter belts, and wood lots upon denuded or non-forested lands within such cooperating states, under such conditions and requirements as he may prescribe, to the end that forest tree seeds or plants so procured, produced, or distributed shall be used effectively for planting denuded or non-forested lands in the cooperating states and growing timber thereon.”

The School of Forestry of the State University at Missoula was chosen as the cooperating agency for the production of tree stock, and the extension service of Montana State College at Bozeman was named as the cooperating agency for distribution of the trees.

Who May Secure Trees

Any person owning a farm in Montana, either dry land or irrigated, may file an application for trees for a wind break, shelter belt, or wood lot planting for that farm. Application for trees should be made through the county agent’s office of the county in which the farm is located. Farmers living in counties that do not maintain a county agent’s office may apply for trees by writing to the horticulture extension office, Bozeman. Blank forms are provided for making application for trees, and these can be
obtained either from the county agent’s office or from the horticulture extension office at Bozeman.

North

Fig. 1—Showing arrangement of tree species for protection of buildings and garden.
Location and Size of Shelter Belt

Shelter for Buildings and Yards—Protection to buildings and yards can be provided by planting a belt of trees 100 to 200 feet in width on the north and west sides. The rows of trees should extend well past the area to be protected. There are, however, some localities in the state where hills and canyons influence local conditions to such an extent that protection is needed from directions other than north and west.

If a belt of trees less than 100 feet in width is planted, the inside edge should be at least 100 feet from the buildings to be protected in order to guard against the inconvenience of drifting snow. This distance may be reduced to a minimum of 50 feet if a 30 to 50 feet snow trap is added to the planting. No difficulty is likely to occur from drifting snow if the strip of trees is more than 150 feet in width. Figure 1 illustrates the location of a shelter belt and the arrangement of tree species for winter protection to buildings and yards. This arrangement also includes space for fruit and vegetables. The garden area is protected from the south as well as the north and west.

Shelter for Orchards and Gardens.—Orchards and gardens need protection against drying winds of spring and summer, but winter protection is also important for fruit trees. Many of the farmsteads are located so that ample area for fruit and vegetables can be included within the main shelter belt. If such an arrangement is not possible, then almost any plot of ground where the soil is fertile may be improved by planting a few rows of trees around the area. Caragana is best adapted for planting the outside row on all four sides. There should be two or three additional rows of such kinds as box elder, American elm, or green ash on the south and west to provide height. A row of evergreens planted on the inside on all four sides will make a valuable addition for density to such a planting. Fig. 2 illustrates the arrangement of tree species for orchard and garden protection.

Preparation of Ground

Moisture is a limiting factor in the growth of trees in Montana under dry land farming conditions. Trees have a fair chance to succeed only when planted in moist soil which is free from weeds and sod. Experiments conducted in the past point to the fact that through preparation of the land by summerfallowing the year preceding planting is essential to secure good stands. Land that has just been broken from native sod may require two years of cultivation to put it in suitable condition for planting.

The following procedure in preparing the land has been found practical. First, plow the land before the middle of May to a depth of 6 to 8 inches. As soon as the plowing is completed, go over the ground twice with a harrow to firm the soil. Second, cultivate the land as often as is necessary during the summer to keep it free from weeds and grass and also to keep the surface from crusting after heavy rainfall. A duckfoot type of cultivator is preferable to a disc for working the ground during the summer. Leave the soil in a rough or ridged condition for winter. Third, do not plow
Fig. 2—Showing arrangement of tree species for protection of garden area.

the ground again the spring that the trees are to be planted as such an operation results in loss of moisture, and a well settled soil is best for planting trees.

Preparation of Irrigated Sites—It is not necessary to summerfallow the land for trees if an abundance of water is available for irrigation unless the ground has just been broken from sod. Working freshly broken sod one year in advance of planting trees will eliminate sufficient hand work to make such a procedure advisable.

Old ground should be plowed to a depth of 6 to 8 inches in the fall and left rough for winter to prevent blowing. The soil should be worked down as early as possible in the spring before planting by diskimg or harrowing.
Receiving and Caring for Trees Before Planting

Trees are likely to dry out and be seriously injured if the shipment is not removed from the station soon after it arrives. Exposure to the sun and drying winds during removal from the station is detrimental to them. This can be guarded against by covering with wet burlap or canvas. Another good practice to follow is to soak the roots and packing material thoroughly by submerging them in a tub of water a few minutes as soon as the planting place is reached. If the weather and soil condition permit, plant the trees without delay. If it is not possible to plant right away, they may be kept in good condition for several days by heeling them in.

To heel in, dig a trench in a shaded, sheltered place with one side sloping and deep enough to bury roots and part of the top. Open the bundles and remove all packing material before heeling in. Place the roots in the trench and the tops against the sloping side. Cover the roots and part of the top with moist soil, packing it firmly against them. A few buckets of water poured over the trees after they are in place will help settle the soil about the roots. Trees will remain dormant longer if a sheltered place is selected where they will not be exposed to the sun. A cave or root cellar is adaptable for storing nursery stock for a short time, providing the packing material is kept moist. Storing in a cave or heeling in is only a temporary means of taking care of trees as they must be planted without delay when the buds are showing signs of bursting.

Methods of Planting

The specific method used in planting does not matter so long as the following principles are observed carefully.

1. Straight rows and accurate spacing will facilitate cultivation.
2. Cramping and twisting of the root system is detrimental to best development of trees. The holes should be deep enough and large enough to permit spreading the roots out in a natural position.
3. Trees should be set one to two inches deeper than they were in the nursery row.
4. Pack the soil firmly about the roots by tamping each successive layer of soil during the process of filling the hole so as to exclude all air pockets.
5. When the hole is filled within about an inch of the top, pour in a gallon of water. After the water has soaked away, finish filling the hole to ground level with loose dirt. Never hill up about the trees as that directs moisture from rainfall away from them. It is best to keep the top two inches of soil about the trees loose either by cultivation or hoeing.
6. Broad-leaf trees can be kept in good condition during the planting operation by carrying them in a pail of water or by keeping them wrapped in wet packing material and burlap. This is to prevent the roots from drying by exposure to the air. Exposing the roots to the sun and strong drying winds for only a short time usually will kill young trees.
7. Small evergreens should be carried with the roots plunged into a
bucket of thin mud during the process of planting. Exposing the roots of evergreens to the air for only a few seconds is detrimental to the trees.

8. Planting on a cloudy or rainy day is preferable to planting on days when a strong wind is blowing.

Correct and incorrect planting practices are shown in Fig. 3, 4, and 5.

Fig. 3—Showing proper depth of planting. The holes should be made large enough to permit spreading roots out naturally. Pack soil firmly about the roots during process of planting so as to exclude all air pockets.

Fig. 4—Showing tree planted too shallow. It is better to plant trees one to two inches deeper than they were in the nursery row.

Fig. 5—Showing tree with roots twisted and cramped. This hinders normal development.
Transplanting Native Evergreens

Small specimens, 6 to 12 inches high, will stand the shock of moving better than larger trees. A bucket of thin mud made from clay soil should be carried along and the roots of the small trees plunged into it as soon as they are lifted from their native sites. Better root systems can be secured if the trees are selected where the soil is deep and fertile. Larger trees should be lifted with a ball of dirt so as to get as much of the root system as possible. Wrapping the ball of dirt with burlap will facilitate handling during the moving process.

Shading Evergreens

Young evergreen trees need protection from the sun and drying winds the first season. Protection can be economically and practically provided by putting up shingles to the south and west of each tree. These shingles will furnish partial shade and at the same time check the drying winds. The chief difficulty with evergreens seems to be in getting them established, but after they become well rooted they will withstand the extremely dry seasons better than the broad-leaf species.

Spacing

Dry Land Situations.—Spacing the rows 12 to 16 feet apart seems to be suitable for the machinery found on most dry land farms. Economy in cultivation is a factor to be considered. Spacing the trees 6 to 8 feet apart in the row is recommended. It will take but a few years for the branches of trees at this spacing to interlock and become effective in breaking the force of the winds.

Trees were spaced as close as 4 by 8 and 4 by 4 feet in many of the early shelter belts established throughout the state. It was thought that by spacing the trees close together they would produce a dense shade within a few years that would control weed growth. This close spacing has brought about early competition for moisture and as a result the trees have not made as rapid growth and losses have been heavier than is the case with greater spacing. Close planting results in a dense growth but this apparently retards trunk and height development. The effectiveness of a shelter belt is determined both by height and density of trees. Greater spacing will permit cultivation over a longer period of years and extend the time when the trees will come in competition with each other for moisture. Trees planted too far apart will develop into a grove rather than an effective wind barrier.

Irrigated Situations.—On planting sites where an unlimited supply of irrigation water is available the distance between rows may be reduced to 10 or even 8 feet. The width between the rows is not so much of a factor on irrigated farms as on dry land situations.

Cutting Back Broad-Leaf Trees

It is practically impossible to save all of the root system of trees when they are lifted out of the nursery row and for that reason it is necessary to cut back from a third to a half of the top to balance the root system.
immediately after transplanting. This cutting back, however, is not considered necessary with one-year old seedlings, unless they have reached abnormal size, with the following exceptions. Caragana, which should always be used for planting the outside row to the windward side, should be cut back to about 4-inch stubs immediately after planting, and encouraged to form a bushy growth thereafter. The elms, both American and Chinese, should have at least half of the top cut back, and trained to a single trunk growth. One-year old green ash seedlings and box elders under 20 inches in height need not be cut back. If it is found necessary to head back either the box elder or green ash it must be borne in mind that they carry their buds in pairs and unless one bud of the top pair is removed after cutting back a bad crotch is likely to form.

Evergreen trees should not be cut back. Cutting back instructions apply only to broad-leaf species.

Cultivation

Trees should be cultivated as soon after planting as possible and as often thereafter as is necessary to prevent weeds and grass from growing. It may be necessary to go through the planting once or twice during the growing season with a hoe to remove weeds and grass immediately around the trees and such other weeds as may be missed by the cultivator.

Cultivation must be kept up each year, particularly under dry land conditions, until the trees have reached a size when it will not be possible to use a team and cultivator between the rows. The life of the trees will depend

Fig. 6—A well cared for shelterbelt. No weeds here. Thorough and timely cultivation is essential for trees to succeed on dry land. Weeds and grass rob trees of food and moisture.
upon the thoroughness of cultivation. Trees cannot compete with weeds and grass under average dry farming conditions.

Straw Mulch

On first thought mulching seems a practical method of handling a shelter belt planting to check growth of weeds and grass and to hold moisture. Following are some of the objections to mulching.

A heavy mulch holds the moisture close to the surface of the ground which encourages shallow rooting. A shallow root system will suffer more from a severe dry spell than one that has penetrated more deeply into the soil.

A mulch harbors rodents and insects that are often injurious to young trees. A mulch is also a fire hazard during the dry season.

In demonstration plantings at the Judith Basin Branch Station the mulched block of trees did not make as satisfactory growth as the cultivated block. Soil drifted over the mulch and made an ideal condition for weed growth. Mowing of weeds had to be done with a scythe.

Pruning

Results obtained by different types of pruning as against no pruning at the Judith Basin Branch Station indicate that a very moderate amount of

Fig. 7—An unpruned block of trees. They are making a dense growth and an effective barrier to ground winds. They are not making as rapid growth in height or trunk development as the moderately pruned tree.
pruning is beneficial to shelter belt trees. Caragana, or other adaptable species however, when planted in the outside row to the windward side should not be pruned after the initial heading back at the time of setting out. Other broad-leaf species such as the elm, ash, and box elder, will make larger trees if pruned to a single stem or trunk. Some of them, especially the box elder, have a tendency to produce a multiple stem or trunk growth if permitted to develop without pruning. The multiple stem growth will perhaps make a little more effective barrier to ground winds but it will be at the expense of growth in height. Fig. 7 shows trees that have received no pruning.

The type of pruning that will produce best development of the trees and still be an effective barrier to ground winds is a single trunk growth with all side branches left on from the ground up. Fig. 8 shows moderately pruned trees. Note the trunk development as compared with trees in Figs. 7 and 9.

Diseased and dead branches should be removed. When removing a limb, cut close to and parallel with the trunk of the tree. Never leave stubs as they hinder healing of the wound and decay is likely to set in and destroy the heart wood of the tree. The best time for pruning is the dormant season.

A young tree that has killed back to the ground is likely to send out a
number of shoots from the base and make little growth in height. Remove all of the shoots except one and train it to become the leader, but do not remove any of the side branches that may develop.

An evergreen tree should never be pruned, except to take out dead or diseased branches.

Fig. 9—Block of severely pruned trees. Note weak spindly trunks and almost total lack of wind protection. The tops of these trees are easily snapped off by strong winds. Trees will make a more sturdy growth and provide better protection when all side branches are left on from the ground up.

Trees for Shelter Belts

There are two distinct groups of trees from which selections may be made for shelter belt planting in Montana. These two groups are the evergreens and the broad-leaf species.

The evergreens are so called because they retain their green foliage throughout the entire year. In general they are harder to get established than broad-leaf kinds but when once established they are hardier and more drought resistant. They are slow growing the first few years but after that they will make about as rapid progress as the broad-leaf kinds under dry farming conditions. Since they hold their foliage the entire year they are more valuable for planting for shelter against winter winds than the
broad-leaf kinds. Evergreens should be included in every shelter belt planting. A combination of both groups is desirable.

![Image of shelter belt]

Fig. 10—A few rows of trees well placed will break the force of winds and prevent snow from piling up about the buildings.

Evergreens

Following is a list of evergreens adapted for farm planting, with a brief description of their habits of growth and requirements.

Jack Pine—Jack Pine is naturally adapted to sandy and light loam soils but it does not thrive as well on the heavy soils as spruce and some of the other pines. It is a shorter lived tree than either the western yellow or Scotch pine. Many individual jack pine trees planted at the Northern Montana Branch Station, Havre, Mont., in 1922 reached a height of 11 feet in seven years.

Western Yellow Pine—This is a native of southeastern Montana. It is not exacting in soil and moisture requirements and when once established will thrive on dry locations. Yellow pine reached a height of 9 feet in seven years after planting at the Northern Montana Branch Station. Its dense foliage and compact crown make it an ideal tree for protection from wind.

Scotch Pine—This evergreen is an introduction from Europe. It is hardy and is adapted to light and heavy soils. It does not make as rapid growth as jack pine the first few years, but in time will make a larger tree. It should be used in preference to the jack pine on the heavier soils and is
well adapted to sandy soils. It makes a more compact growth and has a heavier foliage than the jack pine.

Spruces.—The spruces do not grow as rapidly as the pines but they have the faculty of retaining their branches from the ground up. This, together with their compact habit of growth, makes them desirable for shelter planting to check low winds. They should be used in combination with some faster growing kinds. Spruces prefer moist clay soils but will make satisfactory growth when planted on dry locations where the soil is fertile. Their rate of growth on dry sandy situations is too slow to justify planting them.

The Black Hills spruce has a slight advantage over the Colorado blue spruce in rate of growth. The Colorado blue, however, has greater ornamental value.

The Norway spruce is not as well adapted to dry land situations as the Black Hills spruce because of moisture requirements. It is more rapid in growth than the other spruces if moisture conditions are good and is adapted

Fig. 11.—Evergreens will break the winter winds better than broad leaf species. Western yellow pine in this shelter belt grew to a height of nine feet in seven years.
SHELTER BELTS FOR MONTANA

for planting either alone or in combination with other trees on irrigated farms.

Cedar.—The native cedar or juniper is a hardy tree and comparatively easy to transplant from its native site. It is a small-sized tree and grows rather slowly, but its dense compact habit of growth and its ability to survive under adverse growing conditions makes it a splendid tree to plant for shelter if used in combination with more rapid growing species.

Broad-Leaf Trees

The broad-leaf group is made up of trees having flat leaves of more or less width, such as the elms, ash, poplars, and caragana. They are easier to establish than the evergreens and will make more rapid growth the first few years. They also reach maturity earlier and cannot be considered as permanent. Since they shed their leaves each fall they do not provide as efficient winter protection as the evergreens.

Shelter belt planting made up of a combination of broad-leaf and evergreen trees will give the desired results of quick effect and have the added features of permanency and more efficient winter protection when the evergreens reach some size.

Caragana.—Caragana is a dwarf, shrub-like tree extremely hardy and drought resistant. This species is well adapted for use in the outside row to the windward side on dry land locations. It should be spaced about 3 feet apart in the row and clipped back to 4-inch stubs at the time of setting out. The object is to make it grow bushy so that it will stop drifting snow for the less drought resistant species.

Box Elder.—This tree is also called ash-leaved maple and Manitoba maple. Box elder is easy to transplant and makes quick recovery and rapid growth the first few years. When trained to a single trunk it will make a medium-sized tree; left to itself it develops into a bushy, stunted growth.

American Elm.—This species is native to eastern Montana and is hardy. It prefers moist fertile soils but can adapt itself to dry locations if they are cultivated and kept free from weeds and grass. American elm is one of the best broad-leaf trees for shelter belt planting in Montana. It is of medium size, is longer lived than box elder and poplars, and makes an excellent shade tree.

Green Ash.—Green ash, like the American elm, prefers moist soils but is capable of adapting itself to dry locations. Its buds open late in the spring and it does not make as rapid growth as box elder and poplars but will live longer. It makes a desirable tree in mixed plantings but should not be planted between the more rapid growing kinds or its growth will be stunted. Very little trouble has been experienced from insects with this species.

Chinese Elm.—Chinese elm is a rapid growing tree, particularly well adapted to dry land planting. It is subject to some winter injury, chiefly killing back of tips of branches, but makes quick recovery and a good growth.
each season. This tree has done exceedingly well in combination plantings at the Northern Montana Branch Station. It is better adapted to dry situations than poplars.

Russian Olive.—The Russian olive is a small tree, hardy and well adapted to dry land planting. It is not as satisfactory in the outside row as caragana. Russian olive and box elder serve about the same purpose and there is no need of using both species in the same planting.

Cottonwood.—The native cottonwoods are hardy, rapid growing trees if there is an abundance of soil moisture. They are recommended for irrigated farms but should not be planted on dry locations except possibly for quick, temporary growth. They are short-lived and will last but a few years if there is a shortage of moisture. The shedding of cotton, which is objectionable, can be avoided by careful selection of cuttings from male trees.

Northwestern Poplar.—The Northwestern poplar is a native of North Dakota. It is hardy and rapid in growth if moisture is abundant and can be recommended for irrigated farms. It has been planted quite extensively in the past on dry locations but is proving to be more or less of a disappointment because of its inability to survive long under adverse conditions. When planted on dry locations it should be used only for quick, temporary growth, and then only in combination with slower growing, longer-lived species like the elm, ash, and the evergreens.

Canadian Poplar.—The Canadian poplar is not recommended for planting on dry locations. It is not as desirable as the native cottonwoods for planting under irrigation because of its susceptibility to canker.

Willows.—The willows are moisture loving trees and are not adapted for planting on dry locations. The laurel leaf, Russian golden, and diamond willows are suitable for planting on irrigated farms and around reservoirs. They make rapid growth in moist, fertile soils. The diamond willow is suitable for the production of post material.

Buffalo Berry.—This is a hardy native shrub-like tree which grows naturally under adverse conditions and responds readily to cultivation. It will grow to a height of 15 feet and makes a good addition to a mixed shelter belt planting. The currant-like berries are used by many for household purposes.

Protection of Young Trees

Trees cannot succeed if live stock is given the freedom of the shelter belt area. Animals will cause damage to the trees by nipping off the branches, peeling the bark, and packing the ground, causing it to dry out and thus robbing the trees of moisture. Every planting should be fenced with rabbit-proof woven fence to keep out live stock and rabbits. Frequently snow piles up so that rabbits can go over the top of the fence. It then becomes necessary to trap or poison them for protection of the trees.